• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 120
  • 44
  • 20
  • 10
  • 2
  • 1
  • Tagged with
  • 248
  • 248
  • 94
  • 92
  • 47
  • 41
  • 39
  • 33
  • 33
  • 30
  • 30
  • 27
  • 22
  • 21
  • 20
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
161

Stratigraphic and Paleoecological Controls on Eurypterid Lagerstatten in the Mid-Paleozoic

Vrazo, Matthew B., M.S. 30 September 2016 (has links)
No description available.
162

Tectonic and Sequence Stratigraphic Implications of the Morrison Formation-Buckhorn Conglomerate Transition, Cedar Mountain, East-central Utah

Roca, Xavier Argemi 25 March 2004 (has links)
No description available.
163

The Sedimentological and Paleontological Characteristics of the Portersville Shale, Conemaugh Group, Southeast Ohio

Huffer, Amanda R. 27 September 2007 (has links)
No description available.
164

Fluvial Architecture of the Interval Spanning the Pittsburgh and Fishpot Limestones (Late Pennsylvanian), Southeastern Ohio

King, M. Ryan 25 April 2008 (has links)
No description available.
165

High-Resolution Sequence Stratigraphy of Paleogene, Nontropical Mixed Carbonate/Siliciclastic Shelf Sediments, North Carolina Coastal Plain, U. S. A.

Coffey, Brian Perry 28 January 2000 (has links)
The sequence stratigraphic development of the subsurface Paleogene, Albemarle Basin, North Carolina, was defined using well cuttings and wireline logs tied into largely published biostratigraphic and available seismic data. Facies include: silty and shelly sands and shell beds (estuarine/lagoon/protected inner shelf facies); clean quartz sands and sandy mollusk-fragment grainstones (shoreface/shallow shelf); phosphatic hardgrounds (current and wave-swept shoreface and shallow shelf); bryozoan and echinoderm grainstones/packstones (storm reworked middle shelf); and fine skeletal wackestones and planktonic marls (slightly storm-winnowed to sub-wave base, deeper shelf). Paleogene deposition on this high-energy, open-shelf was characterized by a distinctive shelf profile of inner shelf and inner shelf break, deep shelf and continental shelf/slope break. The successive positions of terminal supersequence inner-shelf-breaks parallel the modern day continental margin and its onshore arches. Thickness trends were strongly controlled by more rapid subsidence within the Albemarle Basin. The Paleocene supersequence is dominated by deep shelf marl and developed following flooding after the latest Cretaceous low-stand. Major shallowing occurred at the end of the Early Paleocene and near the end of the Late Paleocene. The Eocene supersequence developed following lowstand deposition (evident on seismic) just off the terminal Paleocene depositional shelf break. With flooding, a major transgressive sediment body developed (Pamlico spur), that formed a 50 km wide by 50 m high promontory at the inner shelf break, followed by HST progradation of quartzose and bryozoan-echinoderm open shelf carbonates that filled in the laterally adjacent shelf topography. This was followed by ancestral Gulf Stream incision of the southeast-trending, shallow shelf to the south, and deep shelf further northeast. Late Eocene-Oligocene deposition was initiated with localized lowstand sedimentation off the earlier terminal inner shelf break, followed by thin regional marl deposition and widespread highstand inner shelf, quartz sands and quartzose carbonates. Localized Late Oligocene lowstand deposition occurred along the earlier Oligocene terminal inner shelf break, followed by widespread deposition of quartzose facies over the shallow shelf. Oligocene units on the deep shelf were modified by highstand Gulf Stream scour. / Ph. D.
166

High-Resolution Sequence Stratigraphy of Late Mississippian (Chesterian) Mixed Carbonates and Siliciclastics, Illinois Basin

Smith, Langhorne Bullitt 20 May 2008 (has links)
Eight 4th-order (~400 k.y.) disconformity-bounded mixed carbonate-siliciclastic sequences were deposited in the tectonically-active, tide-dominated Illinois basin during the Late Mississippian greenhouse to icehouse transition. Detailed, lithologic cross-sections were constructed through the Chesterian Ste. Genevieve through Glen Dean interval which show an upward change in character from carbonate-dominated sequences bounded by caliche and breccia paleosols to mixed-carbonate siliciclastic sequences bounded by red, slickensided mudrock paleosols and incised valleys. The 4th-order sequences are composed of 5th-order parasequences that can be correlated basin-wide. Parasequences in the basal, dominantly carbonate sequences are composed of patchy ooid grainstone tidal ridge reservoir facies which interfinger with skeletal limestone and are capped by laterally extensive muddy carbonate units. Parasequences in the overlying mixed carbonate siliciclastic interval commonly have basal quartz sandstone valley fill and tidal sand ridge reservoir facies overlain by skeletal limestone and shale-dominated siliciclastics. The sequences can be bundled into sequence pairs and composite sequences. Composite sequences are composed of 4 sequences and are bounded by better developed disconformities that commonly coincide with biostratigraphic zone boundaries. High energy reservoir facies are widespread in transgressive sequence tracts and late highstand sequence tract (where present) and confined to updip areas in the early highstand sequence tracts. Increasing amplitude 4th-order glacio-eustasy produced the sequences and caused the upward increase in incised valleys and deeper water carbonate deposition. Parasequences were produced by 5th-order glacio-eustatic sea-level fluctuations (20-100 k.y.). Sequence pairs and composite sequences were produced by 3rd-order sea-level fluctuations possibly in combination with local tectonics. Spatial and temporal variations in differential subsidence between the eastern and western shelves and the more rapidly subsiding basin interior caused variations in onlap/offlap geometries of sequences and parasequences. Increasingly wetter wet-dry seasonality caused an upward increase in siliciclastic influx and concurrent decrease in ooid deposition. The increasing-amplitude eustasy and progressively more humid climate were caused by the onset of continental glaciation on Gondwana. / Ph. D.
167

Sequence Stratigraphy and Chemostratigraphy Across the Permo-Triassic Extinction Event, Upper Khuff Carbonates, Ghawar Field, Saudi Arabia

Al-Dukhayyil, Raed Khalil 07 June 2012 (has links)
Logging of cores of the Upper Permian and Lower Triassic Khuff Formation, Ghawar, Saudi Arabia, has allowed a high resolution sequence stratigraphic framework to be generated. The lithofacies of this huge, arid epeiric ramp succession include: subaqueous -and supratidal anhydrite, tidal flat laminites, lagoonal mudstone, ooid-peloid grainstone, and subtidal off-shoal open marine mudstone. Third order sequences include the Late Permian upper Khuff C, the Early Triassic Khuff B and the Khuff A sequences, which corrrelate with global cycles. Seven high frequency sequences (HFSs) make up the Changhsingian upper Khuff C. These HFSs are ~400 k.y. duration and probably driven by long term eccentricity. The Early Triassic Khuff B and A sequences are made up of 4 HFSs each, which appear to be ~100 to 200 k.y. duration and not easily tied to eccentricity forcing. The HFSs are in turn composed of parasequences, which appear to be 10 to 20 k.y. average durations, suggesting precessional and half precessional forcing. However, many thin locally developed cycles may be autocycles or subprecessional cycles. Sequence stratigraphic cross sections and facies maps document progradation directions on the platform, reflecting the subtle interplay between the Ghawar structure and regional paleoslopes. Anhydrites are rare in the Permian Upper Khuff C except near the base of the studied interval. Anhydrites are well developed in the Triassic Khuff B and Khuff A where some form transgressive deposits while others are highstand deposits of high frequency sequences. The Permian-Triassic boundary (PTB) on the Arabian Platform marks a significant relative sea-level drop, that exposed from the outcrop belt to somewhere east of Ghawar. This contrasts with transgressive PTB settings elsewhere. Across the PTB the mass extinction is marked by a major decrease in biotic groups. The extinction was followed by development of subtidal thrombolites and increased microbial calcification due to decreased bioskeletonization. The dominant reservoirs in the Permian Upper Khuff C occur in oolite in the uppermost high frequency sequence. In the Triassic Khuff B and A the reservoir facies are commonly non-dolomitized oolitic facies associated with open lagoon carbonates distant from evaporitic tidal flats. Within dolomitized units, best reservoirs are associated with oomoldic porosity, but oolite units proximal to evaporitic tidal flats have porosity plugged by anhydrite. Carbon and oxgyen isotope profiles up to 150 m long were obtained from cored wells of the Khuff Formation, Ghawar Field, Saudi Arabia, across the Permian-Triassic boundary. Major global excursions are at the Changhsingian-Wuchiapingian boundary and the Permian-Triassic boundary, but several smaller excursions also appear to correlate with excursions elsewhere. The presence of the negative C-isotope excursions globally in both δ¹³Ccarbonate and δ¹³C organic as well as in deeper water sections lacking emergence surfaces, strongly supports the idea of these excursions being global phenomena related global C cycling. Over 75% of the negative carbon isotope excursions in Ghawar occur beneath emergence surfaces, including the two major excursions at the Wuchiapingian and Changhsingian stage boundaries. The δ¹³C profiles beneath the boundaries resemble those iii associated with early diagenesis associated with isotopically light soil gas. The δ¹⁸O profiles beneath the surfaces are variable, perhaps reflecting variable effects of evaporation on the meteoric input, mixing or overprinting by burial diagenesis. This suggests that the C-isotope excursions on the Arabian Platform, although global in origin, appear to have been modified by early diagenesis. U depletion across the boundary is compatible with the postulated origins of the PTB event with bottom waters becoming stagnant and reducing, as a result of warming induced by volcanogenic CO₂ released by Siberian trap volcanism, methane release from thermal metamorphism of coals and destabilization of clathrates in the deep sea due to ocean warming. The global extent of the C-isotope and U excursions provides a high resolution correlation tool for Late Permian and Early Triassic successions. / Ph. D.
168

Sequence stratigraphy and the development of a clinoformal carbonate ramp on an abandoned delta system: Mississippian Fort Payne--Salem Interval, Kentucky

Khetani, Amy B. 01 November 2008 (has links)
Middle Mississippian ramp carbonates in Kentucky (Fort Payne to Salem interval) form a large scale depositional supersequence (0 to 500 feet thick, approximately 8 m. y. duration). It formed on and in front of the abandoned Early Mississippian Borden deltaic marine paleoshelf, which had up to 100 m of relief above the adjacent starved basin. Major facies consist of marine quartz sandstone and shale; peritidal carbonates; high-energy ramp margin, crinoidal-bryozoan grainstones; deeper ramp mounds, skeletal grainstone/packstone sheets and channel-fills interlayered with shale or calcisiltite; and slope deposits of siliceous calcisiltite. Regional slopes on the paleoshelf edge and ramp margin are 0.5 to 2.5 mIkm (less than 0.25 degrees), although clinoforms of 2 to 10 degrees occur locally associated with mounds and depositional lobes. The supersequence LST is dominated by mounds interlayered with green shaly, deeper ramp facies. The mounded units are located in a fairway that is normal to the Borden margin but parallel to the Appalachian Grainger deltaic shelf. No TST is evident, except for a glauconite horizon capping the Borden paleoshelf. The supersequence HST consists of at least eight third-order sequences (each approximately 1 m.y. duration), the older ones downlapping onto the shelf 20 to 30 m deep, the younger ones downlapping into the deeper basin (over 150 m water depth). Sequences show marked toplap with the upper sequence boundary. The third-order sequences locally have lowstand sands, some of which may be associated with a paleodrainage system off the Borden paleo shelf. They lack recognizable TSTs, but have well-developed prograding HST units of nearshore shale and peritidal dolomite, skeletal packstone/grainstone banks, and siliceous calcisiltite slope facies. The supersequence correlates with a global sea level cycle in the lower Visean terminating in a major sea-level fall. The highly clinofonned toplapping supersequence reflects this long term, sea-level fall which prevented space from being created on the old delta top. The third-order sequences, although mappable between the sections, are not easily correlated with global third order cycles. / Master of Science
169

Quantitative approaches and applications to the sequence stratigraphy and biodiversity of Pleistocene – Holocene mollusk communities from the Po plain, Italy and San Salvador Island, the Bahamas

Wittmer, Jacalyn M. 26 March 2014 (has links)
The following chapters presented here use modern ecological data and modern marine systems to evaluate past marine depositional settings and the preservation potential of various environments in the geological record. While the chapters in this dissertation vary in terms of study area, sedimentary systems (carbonate vs. siliciclastic), depositional environment, and organisms, all projects are based on developing and using quantitative models to evaluate the present as a means for understanding the past. Chapter one focuses on the preservation potential of rocky intertidal environments. The rocky intertidal zone is one of the most poorly preserved fossil-rich environments in the geological record. However in most coastal marine habitats today, it is one of the most diversity rich environments. Chapter one also focuses on the analytical advantages of hierarchical sampling of gastropod communities across San Salvador Island, the Bahamas to quantify community and species level preservation potential in rocky shore environments. Chapters two and three are based on the fossil-rich sedimentary deposits from the Po coastal plain in northeastern Italy. These deposits have been widely studied in terms of their sedimentology and stratigraphy, resulting in a highly resolved sequence stratigraphic architecture. The integration of sequence stratigraphy with paleobiology can enhance our understanding of spatiotemporal biotic patterns recorded in the fossil record. Used in conjunction with the highly-resolved stratigraphic framework, biotic patterns can be used to assess depositional cycles and bathymetry through time. Chapter two integrates sequence stratigraphic patterns and paleoecological data to develop bathymetric models across fossiliferous marine successions of the Po coastal plain, Italy. Chapter three evaluates the modern ecological dataset used to derive the bathymetric models. The last chapter also explores water depth distribution for selected taxa recorded in the Quaternary sediments and observed in present-day habitats. The dissertation research explored here demonstrates that modern ecological systems are essential to evaluating past geologic events. Through direct observation and quantitative analysis, I have learned that modern and fossil communities behave differently depending on environment (e.g. energy, salinity, water depth, etc.). These variables affect the distribution of living organisms today and through my research, delineate fossil distributions through time. With these observations, new questions have arisen about the latitudinal variability of rocky intertidal fossil preservation and extrapolating the quantitative bathymetric models to deeper time intervals. These questions will lead to future endeavors and pointedly add to the field of geology and stratigraphic paleobiology. / Ph. D.
170

Sequence Stratigraphy of the Bridal Veil Falls Limestone, Carboniferous, Lower Oquirrh Group, on Cascade Mountain, Utah: A standard Morrowan Cyclostratigraphy for the Oquirrh Basin

Shoore, David Joseph 21 March 2005 (has links) (PDF)
The Bridal Veil Falls Limestone (lowest 400 meters of the Permo-Carboniferous Oquirrh Group) is well exposed on the flanks of Cascade Mountain (Wasatch Front and adjacent mountain ranges) near Provo, Utah. Because of its excellent exposure and location in the heart of the Oquirrh depocenter, this area was selected to develop a sequence stratigraphic framework for Morrowan rocks that may be applied throughout the Oquirrh basin (NW Utah and southern Idaho) as well as the adjacent Ely and Bird Springs troughs. Eleven partial to complete sections of the Bridal Veil Falls Limestone were measured along the west and north flanks of Cascade Mountain and the south end of Mt. Timpanogos. There the limestone is comprised principally of mud-rich carbonate lithofacies punctuated by thin, and sometimes discontinuous quartzose sandstone beds. The predominance of muddy to grain-rich heterozoan limestone microfacies suggests deposition on a west-dipping low energy carbonate ramp that prograded westward throughout Morrowan time. Sandstones reflect transport of siliciclastics from the incipient Weber shelf (located to the NE) during episodes of sea-level lowstand. The Bridal Veil Falls Limestone is subdivided into 21, third and fourth order depositional sequences ranging in thickness from 3 to 60 meters, and 62 parasequences. Parasequences are commonly asymmetrical, reflecting rapid flooding followed by protracted shoaling and/or sea level drop. Selected cycles are recognized in the Lake Mountains, Thorpe Hills, and the southern Oquirrh Mountains to the west of Cascade Mountain indicating that Parasequences delineated at Cascade Mountain are regionally extensive over an area of at least 300 square kilometers.

Page generated in 0.0982 seconds