Spelling suggestions: "subject:"dequence stratigraphy."" "subject:"1sequence stratigraphy.""
101 |
Early and Late Diagenetic Processes of Mississippian Carbonates, Northern U.S. RockiesKatz, David Allen 17 September 2008 (has links)
Integrated sequence stratigraphy and geochemistry has significantly improved our knowledge of the formation and distribution of early and late diagenetic products in North American Mississippian carbonates. Deposition of the Madison Limestone occurred in concert with a major perturbation to the global C-pool, the timing of which was constrained by comparing secular variations in the delta13C values from the Madison Limestone with limited biostratigraphy. These early constraints were then improved by peak matching of 87Sr/86Sr values from this study with European brachiopod 87Sr/86Sr. The secular variations in the delta13C values were then applied as a chronostratigraphic tool to outcrops and subsurface core. As a result, our sequence stratigraphic interpretations and knowledge regarding lateral facies variability in carbonate rocks is significantly improved. Geographic variability in the magnitude of the delta13C values is also documented along the dip-transects which suggests that marine waters experienced increasing restriction in a landward direction. These results show how local changes to the C-pool are controlled by the morphology of the depositional system which can significantly affect the original signal of the global carbon pool. The geographic variability in the delta13C and delta18O values from reservoir quality dolomites along the mid-to-upper Madison ramp suggest they also precipitated from a restricted water mass with increased salinity, temperature and alkalinity which in turn, were responsible for the distribution of massive quantities of strataform dolomite deposited during the continental transgression at the beginning of the Mississippian. Trace element and 87Sr/86Sr values from strataform dolomite suggest initial formation from Mississippian seawater and slight resetting during shallow burial diagenesis. Petrography indicates that the formation of this dolomite ceased in the shallow burial environment, between the Mississippian and Permian. These dolomites are cross-cut by comparatively small volumes of geothermal-hydrothermal dolomite associated with Laramide-age breccias and fractures. Tectonic-hydrothermal activity associated with the Laramide Orogeny was responsible for late stage calcite cemented fractures and breccias which cross-cut all carbonate rocks discussed in this thesis. Radiogenic 87Sr/86Sr, depleted delta18O and enriched delta13C values and the hottest fluid inclusions measured in this study suggest the late stage calcite formed in the hydrothermal environment and under the most open-system and water-dominated conditions. Tectonic-diagenesis is ultimately responsible for establishing vertical barriers in the otherwise porous and permeable strataform dolomites.
|
102 |
Impact of Diagenetic Alterations on Reservoir Quality and Heterogeneity of Paralic and Shallow Marine Sandstones : Links to Depositional Facies and Sequence StratigraphyAl-Ramadan, Khalid January 2006 (has links)
This thesis constrains the distribution of diagenetic alterations and their impact on reservoir-quality and heterogeneity evolution pathways in relation to depositional environments and sequence stratigraphy (systems tracts and key sequence stratigraphic surfaces) of four selected paralic and shallow marine siliciclastic successions. Typical eogenetic alterations encountered include the dissolution and kaolinitization of framework silicates, which are closely associated to shoreface facies of forced regressive systems tract (FRWST), lowstand systems tract (LST), upper part of the highstand systems tract (HST), and below the sequence boundary (SB). These alterations are attributed to incursion of meteoric water owing to rapid and considerable fall in the relative sea level. Extensive carbonate cementation is most evident below marine and maximum flooding surfaces (MFS), whereas dissolution of carbonate cement and detrital dolomite occur in LST, HST and below SB. Parameters controlling the patterns and texture (microcrystalline vs. poikilotopic) of calcite cement have been constrained within sequence stratigraphic framework of the sandstones. Coarse crystalline to poikilotopic calcite textures of meteoric water origin are thus closely linked to the FRWST, LST and upper part of the HST sandstones and occur mainly as stratabound concretions, whereas microcrystalline calcite, which was precipitated from marine porewaters, occurs as continuously cemented layers in the transgressive systems tract (TST) and lower part of the HST sandstones. Eogenetic alterations impose, in turn, profound control on the distribution pattern of mesogenetic alterations, and hence on reservoir quality evolution (destruction vs. preservation) pathways of sandstones. Eogenetic infiltrated clays, which occur in the tidal estuarine TST and HST sandstones, have helped preserving porosity in deeply buried sandstone reservoirs (≈ 5 km) through inhibition of extensive cementation by quartz overgrowths. Other essential findings of this thesis include deciphering the control on the formation of authigenic illite and chlorite by ultra-thin (≤ 1 µm thick), grain-coating clay mineral substrate.
|
103 |
Diagenesis and Reservoir-Quality Evolution of Deep-Water Turbidites: Links to Basin Setting, Depositional Facies, and Sequence StratigraphyMansurbeg, Howri January 2007 (has links)
A study of the distribution of diagenetic alterations and their impact on reservoir-quality evolution in four deep-water turbidite successions (Cretaceous to Eocene) from basins in active (foreland) and passive margins revealed the impact of tectonic setting, depositional facies, and changes in the relative sea level. Diagenetic modifications encountered in the turbiditic sandstones from the passive margin basins include dissolution and kaolinitization (kaolin has δ18OV-SMOW = +13.3‰ to +15.2‰; δDV-SMOW = -96.6‰ to -79.6‰) of framework silicates, formation of grain coating chloritic and illitic clays, cementation by carbonates and quartz, as well as the mechanical and chemical compaction of detrital quartz. Kaolinitization, which is most extensive in the lowstand systems tracts, is attributed to meteoric-water flux during major fall in the relative sea level. Preservation of porosity and permeability in sandstones from the passive margin basins (up to 30% and 1 Darcy, respectively) is attributed to the presence of abundant rigid quartz and feldspar grains and to dissolution of carbonate cement as well as mica and feldspars. Diagenetic modifications in turbidites from the foreland basins include carbonate cementation and mechanical compaction of the abundant ductile rock fragments, which were derived from fold-thrust belts. These diagenetic alterations resulted in nearly total elimination of depositional porosity and permeability. The wide range of δ13CV−PDB values of these cements (about -18‰ to +22‰) in passive margin basins is attributed to input of dissolved carbon from various processes of organic matter alterations, including microbial methanogenesis and thermal decarboxylation of kerogen. The narrower range of δ13CV−PDB values of these cements (about -2‰ to +7‰) in the foreland basins suggests the importance of carbon derivation from the dissolution of carbonate grains. The generally wide range of δ18O values (about -17‰ to -1‰) of the carbonate cements reflect the impact of oxygen isotopic composition of the various fluid involved (including marine depositional waters, fluxed meteoric waters, evolved formation waters) and the wide ranges of precipitation temperatures. Results of this study are anticipated to have important implication for hydrocarbon exploration in deep-water turbidites from passive and active margin basins and for pre-drilling assessment of the spatial and temporal distribution of reservoir quality in such deposits.
|
104 |
Diagenesis and Sequence Stratigraphy : Predictive Models for Reservoir Quality Evolution of Fluvial and Glaciogenic and Non-glaciogenic, Paralic DepositsKalefa, Mohamed January 2005 (has links)
Development of a predictive model for the distribution of diagenetic alterations and related evolution of reservoir quality of sandstones was achieved by integrating the knowledge of diagenesis to sequence stratigraphy. This approach allows a better elucidation of the distribution of eogenetic alterations within sequence stratigraphy, because changes in the relative sea level induce changes to: (i) pore water chemistry, (ii) residence time of sediments under certain near-surface geochemical conditions, (iii) variations in the detrital composition, and (iv) amounts and type of organic matter. This thesis revealed that eogenetic alterations, which are linked to sequence stratigraphy and have an impact on reservoir quality evolution, include formation of: (i) pseudomatrix and mechanically infiltrated clays in fluvial sandstones of the lowstand and highstand systems tracts (LST and HST, respectively), (ii) kaolinite in tide-dominated deltaic and foreshore-shoreface sandstones of HST, Gilbert-type deltaic sandstones of LST and fluvial deltaic sandstones of LST, (iii) kaolinite and mechanically infiltrated clays in sandstones lying below sequence boundary, (iv) K-feldspar overgrowths in fluvial deltaic LST, (v) glaucony towards the top of fluvial deltaic LST immediately below and at transgressive surface (TS) and in foreshore and shoreface transgressive systems tracts (TST) below parasequence boundaries (PB) and maximum flooding surface (MFS), (vi) framboidal pyrite and extensive cementation by calcite and dolomite in foreshore and shoreface and tide-dominated deltaic TST, and shoreface and tidal flat HST bioclastic-rich arenites particularly in the vicinity of PB, TS and MFS, (vii) pervasive cementation by iron oxide in shoreface-offshore and shoreface sandstones of TST immediately below the MFS, (viii) zeolites and palygroskite in shoreface sandstones of TST and HST, particularly above PB, and (ix) cementation by siderite in Gilbert-type deltaic sandstones of LST, tide-dominated deltaic and foreshore-shoreface sandstones of HST and in tide-dominated deltaic sandstones of TST, particularly at MFS. Moreover, this thesis revealed that the distribution of eogenetic alterations strongly control, and thus provide information for constraining the distribution patterns of mesogenetic alterations, such as illitization of mechanically infiltrated clays and dickitization of kaolinite, and hence of related reservoir quality evolution of sandstones during progressive burial.
|
105 |
Sedimentary Cyclicity In The Upper Cretaceous Successions Of The Haymana Basin (turkey): Depositional Sequences As Response To Relative Sea & / #8211 / Level ChangesHuseynov, Afgan 01 March 2007 (has links) (PDF)
The Haymana basin in Central Anatolia (Turkey) formed on a Late Cretaceous to Middle Eocene fore & / #8211 / arc accretionary wedge. The aim of this study is to investigate the sedimentary cyclicity and depositional sequences in the Upper Cretaceous clastic successions of the Haymana basin. To be able to achieve this objective, a 250 m stratigraphic section, which is mainly composed of siliciclastics has been measured in the Haymana Basin. In this study, detailed lithofacies analyses were performed and five different facies were recognized in the studied interval of the Haymana Formation. Sandstones, shales and conglomerates are the most abundant in the succession. In the measured section, two chronozones were identified based on the biostratigraphic data. These are the lower Dicarinella asymetrica chronozone and the upper Globotruncanita elevata - Globotruncana ventricosa chronozone corresponding to the Upper Santonian and Lower to Middle Campanian, respectively. Sedimentological analyses, such as provenance, palaeocurrent and grain-size sphericity were also performed and their relation with depositonal environment and change in depositional conditions were discussed.
In order to construct the sequence stratigraphic framework, detailed lithofacies analyses and their vertical association were carried out. The studied interval of the Haymana Formation represents a prograding submarine fan subdivided into three depositional sequences, each with several tens of meters thick successions and two sequence boundaries. Each depositonal sequence consists of system tracts and turbiditic basic sequences with sandstone and conglomeratic beds overlain by mudstones. Turbiditic basic sequences, the sandstone and mudstone alternation allows distinction of smaller subdivisions, namely, basic cyclic units, which are the building blocks of system tracts and turbiditic basic sequences. Depositional sequences of the studied section of the Haymana Formation may correspond to third order relative sea & / #8211 / level cycles. Accordingly, fourth & / #8211 / and fifth & / #8211 / order (Milankovich) cycles might be proposed as basic sequences and basic cyclic units, respectively.
|
106 |
A Sequence Stratigraphic Approach To The Depositional History Analysis Of The Upper Eocene Sedimentary Succession, Northwest Of The Thrace Basin, TurkeySunnetcioglu, Mehmet Akif 01 February 2008 (has links) (PDF)
This study investigates the depositional history of the Late Eocene sedimentary record in the northwest of the Thrace Basin in a sequence stratigraphic approach and estimates the contribution of regional tectonics, basin physiography and eustasy. Late Eocene sedimentary succession was analyzed in two third-order sequences based on two major data sets / seismic reflection and well data sets. Depositional Sequence-1, represented by progradational stacking patterns, comprises the coarse-grained Hamitabat turbidite system. The base of the Sequence-1 was defined as the base of channel fill deposits in the northern shelf setting and the base of slope fan deposits in the slope setting. This boundary separates Lower-Middle and Upper Eocene sediments. In the slope setting, the Hamitabat turbidite system was analyzed in three major depocenters / Western, Northwestern and Northeastern depocenters respectively.
Hamitabat turbidite system was controlled by the interaction of regional tectonics, basin physiography and eustatic fluctuations in the Late Eocene. This study highlighted the role of the regional variables / tectonic
influence and basin morphology on the submarine canyon formation. The facies distribution was controlled by the high subsidence rate of sea-floor dominantly instead of eustasy.
Depositional Sequence-2, represented by mostly retrogradational stacking patterns, is a clastic-carbonate mixed system. Depositional Sequence-2 was subdivided into three higher-order sequences. The lower sequence boundaries were induced by the rapid relative sea-level rise. The
upper boundary of the Depositional Sequence-2 was defined as the termination of clastic-carbonate mixed system and a candidate for the Eocene-Oligocene contact.
|
107 |
Micropalentological Analysis And Sequence Stratigraphy Through Upper Tournaisian Substage In Aladag Unit (central Taurides, Turkey)Dinc, Aksel Tugba 01 December 2009 (has links) (PDF)
The purpose of this study is to investigate the Upper Tournaisian substage within the Carboniferous carbonate deposits of the Aladag Unit in the Hadim region (Central Taurides) based on foraminiferal diversity and to study the meter scale
cyclicity in order to explain the sequence stratigraphic evolution of the carbonate
succession.
In this study, a 27.01 m thick stratigraphic section consisting of limestones and
shales was measured and 89 samples, collected along this section, were analyzed.
Micropaleontological analyses are based on benthic foraminifera. According to
the benthic foraminiferal assemblages, two biozones were identified as Zone Ut1
and Zone Ut2 within the Upper Tournaisian. Zone Ut1 is characterized by a poor
foraminiferal assemblage while the Zone Ut2 consists of a diverse Upper
Tournaisian foraminiferal fauna.
In order to construct a sequence stratigraphic framework and appreciate
depositional environmental changes, microfacies studies were carried out. Seven
microfacies types were recognized and depending on the stacking patterns of these
microfacies types, two fundamental types of cycles, A and B, were identified.
Through the measured section, twenty-five shallowing-upward meter scale cycles and two sequence boundaries were determined. Quantitative analysis of benthic
foraminifera was used to demonstrate the biological response to cyclicity. Since
foraminifers are very sensitive to sea level changes, the abundance of benthic
foraminifera displays a good response to sedimentary cyclicity.
In order to apply a worldwide sequence stratigraphic correlation, the sequence
boundaries and the meter scale cycles of this study were compared with those
described in South China and Western European platform and the Moscow
Syneclise. An Early Tournaisian transgression was followed by a major fall in
relative sea level during the Late Tournaisian. Two sequence boundaries
recognized in the measured section correspond to global sea level falls in the Late
Tournaisian.
|
108 |
Sequence stratigraphy of the late Pleistocene - Holocene deposits on the northwestern margin of the South Caspian BasinRahmanov, Ogtay Rasim 15 November 2004 (has links)
Interpretation of 900 km of a closely spaced grid of high-resolution seismic profiles over the northwestern margin of South Caspian Basin (SCB) allows recognition and study of six late Pleistocene - Holocene depositional sequences.
Sequence stratigraphy analysis of sedimentary strata from 117,000 years B.P. to present led to the identification of a highstand systems tract, two transgressive systems tracts and six lowstand systems tracts. Each systems tract is characterized by specific seismic facies. Diverse depositional processes on the northwestern margin of the SCB are suggested by the thirteen seismic facies patterns recognized in the study area. Two distinct progradational complexes were interpreted within Sequence III and Sequences IV and V in the northeastern and northwestern parts of the study area, respectively. Stratigraphic interpretation of the sequences provided important information on parameters that control depositional architectures, such as lake level fluctuations, tectonic dynamics, and sediment supply.
High sedimentation rates combined with a series of high-frequency and high-amplitude lake-level fluctuations, abrupt changes at the shelf edge, abnormally high formation pressure, and high tectonic activity during Quaternary time resulted in the development of a variety of complex geologic drilling hazards. I distinguished three types of hazards as a result of this study: mud volcanoes, sediment instability, and shallow gas.
The 2D high-resolution seismic dataset from the northwestern margin of the SCB allowed more detailed seismic sequence stratigraphic analysis in the study area than has previously been attempted. In particular, it has a clear application in deciphering sediment supply and relative lake level changes as well as tectonic relationship of the northwestern shelf margin of the SCB.
Results of this work led us towards better understanding of recent depositional history, improved our knowledge of the nature of the basin tectonics, climate history and styles of and controls on sedimentation processes within a sequence stratigraphic framework during the late Pleistocene-Holocene time.
|
109 |
Structural and stratigraphic evolution of the central Mississippi Canyon Area: interaction of salt tectonics and slope processes in the formation of engineering and geologic hazardsBrand, John Richard 12 April 2006 (has links)
Approximately 720 square miles of digital 3-dimensional seismic data covering
the eastern Mississippi Canyon area, Gulf of Mexico, continental shelf was used to
examine the structural and stratigraphic evolution of the geology in the study area. The
analysis focused on salt tectonics and sequence stratigraphy to develop a geologic model
for the study area and its potential impact on engineering and geologic hazards.
Salt in the study area was found to be established structural end-members derived
from shallow-emplaced salt sheets. The transition from regional to local salt tectonics
was identified through structural deformation of the stratigraphic section on the seismic
data and occurred no later than ~450,000 years ago. From ~450,000 years to present,
slope depositional processes have become the dominant geologic process in the study
area.
Six stratigraphic sequences (I-VI) were identified in the study area and found to
correlate with sequences previously defined for the Eastern Mississippi Fan. Condensed
sections were the key to the correlation. The sequence stratigraphy for the Eastern
Mississippi Fan can be extended ~28 miles west, adding another ~720 square miles to
the interpreted Fan.
A previously defined channel within the Eastern Fan was identified in the study
area and extended the channel ~28 miles west. Previous work on the Eastern Fan
identified the source of the Fan to be the Mobile River; however, extending the channel
west suggests the sediment source to be from the Mississippi River, not the Mobile
River. Further evidence for this was found in ponded turbidites whose source has been
previously established as the Mississippi River.
Ages of the stratigraphic sequences were compared to changes in eustatic sea
level. The formation stratigraphic sequences appear decoupled from sea level change
with ?pseudo-highstands? forming condensed sections during pronounced Pleistocene
sea level lowstands. Miocene and Pleistocene depositional analogues suggest the
location of the shifting Mississippi River Pleistocene depocenter is a more dominant
influence on sequence formation. Thus, the application of traditional sequence
interpretation with respect to sea level change should be reconsidered to also account for
the shifting depocenter for both the study area as well as the broader Eastern Mississippi
Fan.
|
110 |
Core-seismic correlation and sequence stratigraphy at IODP Expedition 317 drillsites, Canterbury Basin, New ZealandPolat, Faik Ozcan 26 April 2013 (has links)
High rates of Neogene sediment influx to the offshore Canterbury Basin resulted in preservation of a high-resolution record of seismically resolvable sequences (~0.1-0.54 my periods). Subsequent sequence development was strongly influenced by submarine currents. This study focuses on correlating seismically interpreted sequence boundaries and sediment drifts architectures beneath the modern shelf and slope with sediment facies observed in cores from shelf Site U1351 and slope Site U1352 drilled by Integrated Ocean Drilling Program (IODP) Expedition 317. A traveltime-depth conversion was created using sonic and density logs and is compared with two previous traveltime-depth conversions for the sites. Eleven large elongate drifts were interpreted prior to drilling. Two new small-scale plastered slope drifts in the vicinity of the IODP sites, together with sediment waves drilled at Site U1352, have been interpreted as part of this study. Lithologic discontinuity surfaces and transitions together with associated sediment packages form the basis of identifying sequences and sequence boundaries in the cores. Contacts and facies were characterized using shipboard core descriptions, emphasizing grain-size contrasts and the natures of the lower and upper contacts of sediment packages. Lithologic surfaces in cores from sites U1351- (surfaces S1-S8) and U1352- (surfaces S1-S6) correlate with early Pleistocene to recent seismic sequence boundaries U12-U19 and U14-U19, respectively. The limited depths achieved by downhole logging, in particular sonic and density logs, together with poor recovery in the deeper section did not allow correlation of older lithologic surfaces. Slope Site U1352 experienced a complex interplay of along-strike and downslope depositional processes and cores provide information about the principal facies forming sediment waves. The general facies are fine-grained mud rich sediment interbedded decimeter-centimeter thick sand and sandy mud. Core evidence for current activity is reinforced at larger scale by seismic interpretations of sediment waves and drifts. / text
|
Page generated in 0.0951 seconds