• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Revealing the Positive Meaning of a Negation

Sarabi, Zahra 05 1900 (has links)
Negation is a complex phenomenon present in all human languages, allowing for the uniquely human capacities of denial, contradiction, misrepresentation, lying, and irony. It is in the first place a phenomenon of semantical opposition. Sentences containing negation are generally (a) less informative than affirmative ones, (b) morphosyntactically more marked—all languages have negative markers while only a few have affirmative markers, and (c) psychologically more complex and harder to process. Negation often conveys positive meaning. This meaning ranges from implicatures to entailments. In this dissertation, I develop a system to reveal the underlying positive interpretation of negation. I first identify which words are intended to be negated (i.e, the focus of negation) and second, I rewrite those tokens to generate an actual positive interpretation. I identify the focus of negation by scoring probable foci along a continuous scale. One of the obstacles to exploring foci scoring is that no public datasets exist for this task. Thus, to study this problem I create new corpora. The corpora contain verbal, nominal and adjectival negations and their potential positive interpretations along with their scores ranging from 1 to 5. Then, I use supervised learning models for scoring the focus of negation. In order to rewrite the focus of negation with its positive interpretation, I work with negations from Simple Wikipedia, automatically generate potential positive interpretations, and then collect manual annotations that effectively rewrite the negation in positive terms. This procedure yields positive interpretations for approximately 77% of negations, and the final corpus includes over 5,700 negations and over 5,900 positive interpretations. I then use sequence-to-sequence neural models and provide baseline results.
2

Neural Sequence Modeling for Domain-Specific Language Processing: A Systematic Approach

Zhu, Ming 14 August 2023 (has links)
In recent years, deep learning based sequence modeling (neural sequence modeling) techniques have made substantial progress in many tasks, including information retrieval, question answering, information extraction, machine translation, etc. Benefiting from the highly scalable attention-based Transformer architecture and enormous open access online data, large-scale pre-trained language models have shown great modeling and generalization capacity for sequential data. However, not all domains benefit equally from the rapid development of neural sequence modeling. Domains like healthcare and software engineering have vast amounts of sequential data containing rich knowledge, yet remain under-explored due to a number of challenges: 1) the distribution of the sequences in specific domains is different from the general domain; 2) the effective comprehension of domain-specific data usually relies on domain knowledge; and 3) the labelled data is usually scarce and expensive to get in domain-specific settings. In this thesis, we focus on the research problem of applying neural sequence modeling methods to address both common and domain-specific challenges from the healthcare and software engineering domains. We systematically investigate neural-based machine learning approaches to address the above challenges in three research directions: 1) learning with long sequences, 2) learning from domain knowledge and 3) learning under limited supervision. Our work can also potentially benefit more domains with large amounts of sequential data. / Doctor of Philosophy / In the last few years, computer programs that learn and understand human languages (an area called machine learning for natural language processing) have significantly improved. These advances are visible in various areas such as retrieving information, answering questions, extracting key details from texts, and translating between languages. A key to these successes has been the use of a type of neural network structure known as a "Transformer", which can process and learn from lots of information found online. However, these successes are not uniform across all areas. Two fields, healthcare and software engineering, still present unique challenges despite having a wealth of information. Some of these challenges include the different types of information in these fields, the need for specific expertise to understand this information, and the shortage of labeled data, which is crucial for training machine learning models. In this thesis, we focus on the use of machine learning for natural language processing methods to solve these challenges in the healthcare and software engineering fields. Our research investigates learning with long documents, learning from domain-specific expertise, and learning when there's a shortage of labeled data. The insights and techniques from our work could potentially be applied to other fields that also have a lot of sequential data.

Page generated in 0.0728 seconds