• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Study of Fairness and Information Heterogeneity in Recommendation Systems

Altaf, Basmah 21 November 2019 (has links)
Recommender systems are an integral and successful application of machine learning in e-commerce industry and in everyday lives of online users. Recommendation algorithms are used extensively for news, musics, books, point of interests, or travel recommendation as well as in many other domains. Although much focus has been paid on improving recommendation quality, however, some real-world aspects are not considered: How to ensure that top-n recommendations are fair and not biased due to any popularity boosting events, such as awards for movies or songs? How to recommend items to entities by explicitly considering information from heterogeneous sources. What is the best way to model sequential recommendation systems as heterogeneous context-aware design, and learning on-the-fly from spatial, temporal and social contexts. Can we model attributes and heterogeneous relations in a heterogeneous information network? The goal of this thesis is to pave the way towards the next generation of realworld recommendation systems tackling fairness and information heterogeneity challenges to improve the user experience, while giving good recommendations. This thesis bridges techniques from recommendation and deep-learning techniques for representation learning by proposing novel techniques to address the above real-world problems. We focus on four directions: (1) model the effect of popularity bias over time on the consumption of items, (2) model the heterogeneous information associated with sequential history of users and social links for sequential recommendation, (3) model the heterogeneous links and rich content of nodes in an academic heterogeneous information network, and (4) learn semantics using topic modeling for nodes based on their content and heterogeneous links in a heterogeneous information network.
2

Sequential recommendation for food recipes with Variable Order Markov Chain / Sekventiell rekommendation för matrecept med Variable Order Markov Chain

Xu, Xuechun January 2018 (has links)
One of the key tasks in the study of the recommendation system is to model the dynamics aspect of a person's preference, i.e. to give sequential recommendations. Markov Chain (MC), which is famous for its capability of learning a transition graph, is the most popular approach to address the task. In previous work, the recommendation system attempts to model the short-term dynamics of the personal preference based on the long-term dynamics, which implies the assumption that the personal preference over a set of items remains same over time. However, in the field of food science, the study of Sensory-Specific Satiety (SSS) shows that the personal preference on food changes along time and previous meals. However, whether such changes follow certain patterns remains unclear. In this paper, a recommendation system is built based on Variable Order Markov Chain (VOMC), which is capable of modeling various lengths of sequential patterns using the suffix tree (ST) search. This recommendation system aims to understand and model the short-term dynamics aspect of the personal preference on food. To evaluate the system, a Food Diary survey is carried to collect users’ meals data over seven days. The results show that this recommendation system can give meaningful recommendations. / En av huvuduppgifterna när det kommer till rekommenderingsplatformar är att modellera kortsidiga dynamiska egenskaper, dvs. användares sekventiella beteenden. Markov Chain (MC), som är mest känd för sin förmåga att lära sig övergångsgrafer, är den mest populära metoden för att ge sig på denna uppgift. I föregående arbeten så har rekommenderingsplatformar ofta tenderat att modellera kortsidig dynamik baserat på långsidig dynamik, t.ex. likheter mellan objekt eller användares relativa preferenser givet olika tillfällen. Att använda den här metoden brukar medföra att användares långsiktiga dynamik, i detta fall personliga smakpreferenser, är alltid densamma. Däremot, så har studien av Sensory-Specific Satiety visat att användares preferenser gällande mat varierar. I detta arbete så undersöks ett rekommenderingssystem som baseras på Variable Order Markov Chain (VOMC) som kan anpassa sig efter den observerade realiseringen genom att använda suffix tree (ST) för att extrahera sekventiella mönster. Detta rekommenderingssystem fokuserar på kortsidig dynamik istället för att kombinera kort- och långsidig dynamik. För att evaluera metoden, en undersökning av vilken mat som konsumeras, under loppet av sju dagar, ges ut för att samla data om vilken mat och i vilken ordning användare konsumerar. I resultaten så visas att det föreslagna rekommenderingsystemet kan ge meningsfulla rekommendationer.
3

On recommendation systems in a sequential context / Des Systèmes de Recommandation dans un Contexte Séquentiel

Guillou, Frédéric 02 December 2016 (has links)
Cette thèse porte sur l'étude des Systèmes de Recommandation dans un cadre séquentiel, où les retours des utilisateurs sur des articles arrivent dans le système l'un après l'autre. Après chaque retour utilisateur, le système doit le prendre en compte afin d'améliorer les recommandations futures. De nombreuses techniques de recommandation ou méthodologies d'évaluation ont été proposées par le passé pour les problèmes de recommandation. Malgré cela, l'évaluation séquentielle, qui est pourtant plus réaliste et se rapproche davantage du cadre d'évaluation d'un vrai système de recommandation, a été laissée de côté. Le contexte séquentiel nécessite de prendre en considération différents aspects non visibles dans un contexte fixe. Le premier de ces aspects est le dilemme dit d'exploration vs. exploitation: le modèle effectuant les recommandations doit trouver le bon compromis entre recueillir de l'information sur les goûts des utilisateurs à travers des étapes d'exploration, et exploiter la connaissance qu'il a à l'heure actuelle pour maximiser le feedback reçu. L'importance de ce premier point est mise en avant à travers une première évaluation, et nous proposons une approche à la fois simple et efficace, basée sur la Factorisation de Matrice et un algorithme de Bandit Manchot, pour produire des recommandations appropriées. Le second aspect pouvant apparaître dans le cadre séquentiel surgit dans le cas où une liste ordonnée d'articles est recommandée au lieu d'un seul article. Dans cette situation, le feedback donné par l'utilisateur est multiple: la partie explicite concerne la note donnée par l'utilisateur concernant l'article choisi, tandis que la partie implicite concerne les articles cliqués (ou non cliqués) parmi les articles de la liste. En intégrant les deux parties du feedback dans un modèle d'apprentissage, nous proposons une approche basée sur la Factorisation de Matrice, qui peut recommander de meilleures listes ordonnées d'articles, et nous évaluons cette approche dans un contexte séquentiel particulier pour montrer son efficacité. / This thesis is dedicated to the study of Recommendation Systems under a sequential setting, where the feedback given by users on items arrive one after another in the system. After each feedback, the system has to integrate it and try to improve future recommendations. Many techniques or evaluation methods have already been proposed to study the recommendation problem. Despite that, such sequential setting, which is more realistic and represent a closer framework to a real Recommendation System evaluation, has surprisingly been left aside. Under a sequential context, recommendation techniques need to take into consideration several aspects which are not visible for a fixed setting. The first one is the exploration-exploitation dilemma: the model making recommendations needs to find a good balance between gathering information about users' tastes or items through exploratory recommendation steps, and exploiting its current knowledge of the users and items to try to maximize the feedback received. We highlight the importance of this point through the first evaluation study and propose a simple yet efficient approach to make effective recommendation, based on Matrix Factorization and Multi-Armed Bandit algorithms. The second aspect emphasized by the sequential context appears when a list of items is recommended to the user instead of a single item. In such a case, the feedback given by the user includes two parts: the explicit feedback as the rating, but also the implicit feedback given by clicking (or not clicking) on other items of the list. By integrating both feedback into a Matrix Factorization model, we propose an approach which can suggest better ranked list of items, and we evaluate it in a particular setting.
4

Attention-based Multi-Behavior Sequential Network for E-commerce Recommendation / Rekommendation för uppmärksamhetsbaserat multibeteende sekventiellt nätverk för e-handel

Li, Zilong January 2022 (has links)
The original intention of the recommender system is to solve the problem of information explosion, hoping to help users find the content they need more efficiently. In an e-commerce platform, users typically interact with items that they are interested in or need in a variety of ways. For example, buying, browsing details, etc. These interactions are recorded as time-series information. How to use this sequential information to predict user behaviors in the future and give an efficient and effective recommendation is a very important problem. For content providers, such as merchants in e-commerce platforms, more accurate recommendation means higher traffic, CTR (click-through rate), and revenue. Therefore, in the industry, the CTR model for recommendation systems is a research hotspot. However, in the fine ranking stage of the recommendation system, the existing models have some limitations. No researcher has attempted to predict multiple behaviors of one user simultaneously by processing sequential information. We define this problem as the multi-task sequential recommendation problem. In response to this problem, we study the CTR model, sequential recommendation, and multi-task learning. Based on these studies, this paper proposes AMBSN (Attention-based Multi-Behavior Sequential Network). Specifically, we added a transformer layer, the activation unit, and the multi-task tower to the traditional Embedding&MLP (multi-layer perceptron) model. The transformer layer enables our model to efficiently extract sequential behavior information, the activation unit can understand user interests, and the multi-task tower structure makes the model give the prediction of different user behaviors at the same time. We choose user behavior data from Taobao for recommendation published on TianChi as the dataset, and AUC as the evaluation criterion. We compare the performance of AMBSN and some other models on the test set after training. The final results of the experiment show that our model outperforms some existing models. / L’intenzione originale del sistema di raccomandazione è risolvere il problema dell’esplosione delle informazioni, sperando di aiutare gli utenti a trovare il contenuto di cui hanno bisogno in modo più efficiente. In una piattaforma di e-commerce, gli utenti in genere interagiscono con gli articoli a cui sono interessati o di cui hanno bisogno in vari modi. Ad esempio, acquisti, dettagli di navigazione, ecc. Queste interazioni vengono registrate come informazioni di serie temporali. Come utilizzare queste informazioni sequenziali per prevedere i comportamenti degli utenti in futuro e fornire una raccomandazione efficiente ed efficace è un problema molto importante. Per i fornitori di contenuti, come i commercianti nelle piattaforme di e-commerce, una raccomandazione più accurata significa traffico, CTR (percentuale di clic) ed entrate più elevati. Pertanto, nel settore, il modello CTR per i sistemi di raccomandazione è un hotspot di ricerca. Tuttavia, nella fase di classificazione fine del sistema di raccomandazione, i modelli esistenti presentano alcune limitazioni. Nessun ricercatore ha tentato di prevedere più comportamenti di un utente contemporaneamente elaborando informazioni sequenziali. Definiamo questo problema come il problema di raccomandazione sequenziale multi-task. In risposta a questo problema, studiamo il modello CTR, la raccomandazione sequenziale e l’apprendimento multi-task. Sulla base di questi studi, questo documento propone AMBSN (Attention-based Multi-Behavior Sequential Network). In particolare, abbiamo aggiunto uno strato trasformatore, l’unità di attivazione e la torre multi-task al tradizionale modello Embedding&MLP (multi-layer perceptron). Il livello del trasformatore consente al nostro modello di estrarre in modo efficiente le informazioni sul comportamento sequenziale, l’unità di attivazione può comprendere gli interessi degli utenti e la struttura della torre multi-task fa sì che il modello fornisca la previsione di diversi comportamenti degli utenti contemporaneamente. Scegliamo i dati sul comportamento degli utenti da Taobao per la raccomandazione pubblicata su TianChi come set di dati e l’AUC come criterio di valutazione. Confrontiamo le prestazioni di AMBSN e di alcuni altri modelli sul set di test dopo l’allenamento. I risultati finali dell’esperimento mostrano che il nostro modello supera alcuni modelli esistenti.

Page generated in 0.1356 seconds