• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 20
  • 2
  • Tagged with
  • 27
  • 27
  • 27
  • 14
  • 7
  • 7
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Policy Explanation and Model Refinement in Decision-Theoretic Planning

Khan, Omar Zia January 2013 (has links)
Decision-theoretic systems, such as Markov Decision Processes (MDPs), are used for sequential decision-making under uncertainty. MDPs provide a generic framework that can be applied in various domains to compute optimal policies. This thesis presents techniques that offer explanations of optimal policies for MDPs and then refine decision theoretic models (Bayesian networks and MDPs) based on feedback from experts. Explaining policies for sequential decision-making problems is difficult due to the presence of stochastic effects, multiple possibly competing objectives and long-range effects of actions. However, explanations are needed to assist experts in validating that the policy is correct and to help users in developing trust in the choices recommended by the policy. A set of domain-independent templates to justify a policy recommendation is presented along with a process to identify the minimum possible number of templates that need to be populated to completely justify the policy. The rejection of an explanation by a domain expert indicates a deficiency in the model which led to the generation of the rejected policy. Techniques to refine the model parameters such that the optimal policy calculated using the refined parameters would conform with the expert feedback are presented in this thesis. The expert feedback is translated into constraints on the model parameters that are used during refinement. These constraints are non-convex for both Bayesian networks and MDPs. For Bayesian networks, the refinement approach is based on Gibbs sampling and stochastic hill climbing, and it learns a model that obeys expert constraints. For MDPs, the parameter space is partitioned such that alternating linear optimization can be applied to learn model parameters that lead to a policy in accordance with expert feedback. In practice, the state space of MDPs can often be very large, which can be an issue for real-world problems. Factored MDPs are often used to deal with this issue. In Factored MDPs, state variables represent the state space and dynamic Bayesian networks model the transition functions. This helps to avoid the exponential growth in the state space associated with large and complex problems. The approaches for explanation and refinement presented in this thesis are also extended for the factored case to demonstrate their use in real-world applications. The domains of course advising to undergraduate students, assisted hand-washing for people with dementia and diagnostics for manufacturing are used to present empirical evaluations.
12

Policy Explanation and Model Refinement in Decision-Theoretic Planning

Khan, Omar Zia January 2013 (has links)
Decision-theoretic systems, such as Markov Decision Processes (MDPs), are used for sequential decision-making under uncertainty. MDPs provide a generic framework that can be applied in various domains to compute optimal policies. This thesis presents techniques that offer explanations of optimal policies for MDPs and then refine decision theoretic models (Bayesian networks and MDPs) based on feedback from experts. Explaining policies for sequential decision-making problems is difficult due to the presence of stochastic effects, multiple possibly competing objectives and long-range effects of actions. However, explanations are needed to assist experts in validating that the policy is correct and to help users in developing trust in the choices recommended by the policy. A set of domain-independent templates to justify a policy recommendation is presented along with a process to identify the minimum possible number of templates that need to be populated to completely justify the policy. The rejection of an explanation by a domain expert indicates a deficiency in the model which led to the generation of the rejected policy. Techniques to refine the model parameters such that the optimal policy calculated using the refined parameters would conform with the expert feedback are presented in this thesis. The expert feedback is translated into constraints on the model parameters that are used during refinement. These constraints are non-convex for both Bayesian networks and MDPs. For Bayesian networks, the refinement approach is based on Gibbs sampling and stochastic hill climbing, and it learns a model that obeys expert constraints. For MDPs, the parameter space is partitioned such that alternating linear optimization can be applied to learn model parameters that lead to a policy in accordance with expert feedback. In practice, the state space of MDPs can often be very large, which can be an issue for real-world problems. Factored MDPs are often used to deal with this issue. In Factored MDPs, state variables represent the state space and dynamic Bayesian networks model the transition functions. This helps to avoid the exponential growth in the state space associated with large and complex problems. The approaches for explanation and refinement presented in this thesis are also extended for the factored case to demonstrate their use in real-world applications. The domains of course advising to undergraduate students, assisted hand-washing for people with dementia and diagnostics for manufacturing are used to present empirical evaluations.
13

Contributions to Simulation-based High-dimensional Sequential Decision Making

Hoock, Jean-Baptiste 10 April 2013 (has links) (PDF)
My thesis is entitled "Contributions to Simulation-based High-dimensional Sequential Decision Making". The context of the thesis is about games, planning and Markov Decision Processes. An agent interacts with its environment by successively making decisions. The agent starts from an initial state until a final state in which the agent can not make decision anymore. At each timestep, the agent receives an observation of the state of the environment. From this observation and its knowledge, the agent makes a decision which modifies the state of the environment. Then, the agent receives a reward and a new observation. The goal is to maximize the sum of rewards obtained during a simulation from an initial state to a final state. The policy of the agent is the function which, from the history of observations, returns a decision. We work in a context where (i) the number of states is huge, (ii) reward carries little information, (iii) the probability to reach quickly a good final state is weak and (iv) prior knowledge is either nonexistent or hardly exploitable. Both applications described in this thesis present these constraints : the game of Go and a 3D simulator of the european project MASH (Massive Sets of Heuristics). In order to take a satisfying decision in this context, several solutions are brought : 1. Simulating with the compromise exploration/exploitation (MCTS) 2. Reducing the complexity by local solving (GoldenEye) 3. Building a policy which improves itself (RBGP) 4. Learning prior knowledge (CluVo+GMCTS) Monte-Carlo Tree Search (MCTS) is the state of the art for the game of Go. From a model of the environment, MCTS builds incrementally and asymetrically a tree of possible futures by performing Monte-Carlo simulations. The tree starts from the current observation of the agent. The agent switches between the exploration of the model and the exploitation of decisions which statistically give a good cumulative reward. We discuss 2 ways for improving MCTS : the parallelization and the addition of prior knowledge. The parallelization does not solve some weaknesses of MCTS; in particular some local problems remain challenges. We propose an algorithm (GoldenEye) which is composed of 2 parts : detection of a local problem and then its resolution. The algorithm of resolution reuses some concepts of MCTS and it solves difficult problems of a classical database. The addition of prior knowledge by hand is laborious and boring. We propose a method called Racing-based Genetic Programming (RBGP) in order to add automatically prior knowledge. The strong point is that RBGP rigorously validates the addition of a prior knowledge and RBGP can be used for building a policy (instead of only optimizing an algorithm). In some applications such as MASH, simulations are too expensive in time and there is no prior knowledge and no model of the environment; therefore Monte-Carlo Tree Search can not be used. So that MCTS becomes usable in this context, we propose a method for learning prior knowledge (CluVo). Then we use pieces of prior knowledge for improving the rapidity of learning of the agent and for building a model, too. We use from this model an adapted version of Monte-Carlo Tree Search (GMCTS). This method solves difficult problems of MASH and gives good results in an application to a word game.
14

Processos de decisão Markovianos com probabilidades imprecisas e representações relacionais: algoritmos e fundamentos. / Markov decision processes with imprecise probabilities and relational representations: foundations and algorithms.

Ricardo Shirota Filho 03 May 2012 (has links)
Este trabalho é dedicado ao desenvolvimento teórico e algorítmico de processos de decisão markovianos com probabilidades imprecisas e representações relacionais. Na literatura, essa configuração tem sido importante dentro da área de planejamento em inteligência artificial, onde o uso de representações relacionais permite obter descrições compactas, e o emprego de probabilidades imprecisas resulta em formas mais gerais de incerteza. São três as principais contribuições deste trabalho. Primeiro, efetua-se uma discussão sobre os fundamentos de tomada de decisão sequencial com probabilidades imprecisas, em que evidencia-se alguns problemas ainda em aberto. Esses resultados afetam diretamente o (porém não restrito ao) modelo de interesse deste trabalho, os processos de decisão markovianos com probabilidades imprecisas. Segundo, propõe-se três algoritmos para processos de decisão markovianos com probabilidades imprecisas baseadas em programação (otimização) matemática. E terceiro, desenvolvem-se ideias propostas por Trevizan, Cozman e de Barros (2008) no uso de variantes do algoritmo Real-Time Dynamic Programming para resolução de problemas de planejamento probabilístico descritos através de versões estendidas da linguagem de descrição de domínios de planejamento (PPDDL). / This work is devoted to the theoretical and algorithmic development of Markov Decision Processes with Imprecise Probabilities and relational representations. In the literature, this configuration is important within artificial intelligence planning, where the use of relational representations allow compact representations and imprecise probabilities result in a more general form of uncertainty. There are three main contributions. First, we present a brief discussion of the foundations of decision making with imprecise probabilities, pointing towards key questions that remain unanswered. These results have direct influence upon the model discussed within this text, that is, Markov Decision Processes with Imprecise Probabilities. Second, we propose three algorithms for Markov Decision Processes with Imprecise Probabilities based on mathematical programming. And third, we develop ideas proposed by Trevizan, Cozman e de Barros (2008) on the use of variants of Real-Time Dynamic Programming to solve problems of probabilistic planning described by an extension of the Probabilistic Planning Domain Definition Language (PPDDL).
15

SEQUENTIAL INFORMATION ACQUISITION AND DECISION MAKING IN DESIGN CONTESTS: THEORETICAL AND EXPERIMENTAL STUDIES

Murtuza Shergadwala (9183527) 30 July 2020 (has links)
<p>The primary research question of this dissertation is, \textit{How do contestants make sequential design decisions under the influence of competition?} To address this question, I study the influence of three factors, that can be controlled by the contest organizers, on the contestants' sequential information acquisition and decision-making behaviors. These factors are (i) a contestant's domain knowledge, (ii) framing of a design problem, and (iii) information about historical contests. The \textit{central hypothesis} is that by conducting controlled behavioral experiments we can acquire data of contestant behaviors that can be used to calibrate computational models of contestants' sequential decision-making behaviors, thereby, enabling predictions about the design outcomes. The behavioral results suggest that (i) contestants better understand problem constraints and generate more feasible design solutions when a design problem is framed in a domain-specific context as compared to a domain-independent context, (ii) contestants' efforts to acquire information about a design artifact to make design improvements are significantly affected by the information provided to them about their opponent who is competing to achieve the same objectives, and (iii) contestants make information acquisition decisions such as when to stop acquiring information, based on various criteria such as the number of resources, the target objective value, and the observed amount of improvement in their design quality. Moreover, the threshold values of such criteria are influenced by the information the contestants have about their opponent. The results imply that (i) by understanding the influence of an individual's domain knowledge and framing of a problem we can provide decision-support tools to the contestants in engineering design contexts to better acquire problem-specific information (ii) we can enable contest designers to decide what information to share to improve the quality of the design outcomes of design contest, and (iii) from an educational standpoint, we can enable instructors to provide students with accurate assessments of their domain knowledge by understanding students' information acquisition and decision making behaviors in their design projects. The \textit{primary contribution} of this dissertation is the computational models of an individual's sequential decision-making process that incorporate the behavioral results discussed above in competitive design scenarios. Moreover, a framework to conduct factorial investigations of human decision making through a combination of theory and behavioral experimentation is illustrated. <br></p>
16

Situation-appropriate Investment of Cognitive Resources

Ott, Florian 29 March 2022 (has links)
The human brain is equipped with the ability to plan ahead, i.e. to mentally simulate the expected consequences of candidate actions to select the one with the most desirable expected long-term outcome. Insufficient planning can lead to maladaptive behaviour and may even be a contributory cause of important societal problems such as the depletion of natural resources or man-made climate change. Understanding the cognitive and neural mechanisms of forward planning and its regulation are therefore of great importance and could ultimately give us clues on how to better align our behaviour with long-term goals. Apart from its potential beneficial effects, planning is time-consuming and therefore associated with opportunity costs. It is assumed that the brain regulates the investment into planning based on a cost-benefit analysis, so that planning only takes place when the perceived benefits outweigh the costs. But how can the brain know in advance how beneficial or costly planning will be? One potential solution is that people learn from experience how valuable planning would be in a given situation. It is however largely unknown how the brain implements such learning, especially in environments with large state spaces. This dissertation tested the hypothesis that humans construct and use so-called control contexts to efficiently adjust the degree of planning to the demands of the current situation. Control contexts can be seen as abstract state representations, that conveniently cluster together situations with a similar demand for planning. Inferring context thus allows to prospectively adjust the control system to the learned demands of the global context. To test the control context hypothesis, two complex sequential decision making tasks were developed. Each of the two tasks had to fulfil two important criteria. First, the tasks should generate both situations in which planning had the potential to improve performance, as well as situations in which a simple strategy was sufficient. Second, the tasks had to feature rich state spaces requiring participants to compress their state representation for efficient regulation of planning. Participants’ planning was modelled using a parametrized dynamic programming solution to a Markov Decision Process, with parameters estimated via hierarchical Bayesian inference. The first study used a 15-step task in which participants had to make a series of decisions to achieve one or multiple goals. In this task, the computational costs of accurate forward planning increased exponentially with the length of the planning horizon. We therefore hypothesized that participants identify ‘distance from goal’ as the relevant contextual feature to guide their regulation of forward planning. As expected we found that participants predominantly relied on a simple heuristic when still far from the goal but progressively switched towards forward planning when the goal approached. In the second study participants had to sustainably invest a limited but replenishable energy resource, that was needed to accept offers, in order to accumulate a maximum number of points in the long run. The demand for planning varied across the different situations of the task, but due to the large number of possible situations (n = 448) it would be difficult for the participants to develop an expectation for each individual situation of how beneficial planning would be. We therefore hypothesized, that to regulate their forward planning participants used a compressed tasks representation, clustering together states with similar demands for planning. Consistent with this, reaction times (operationalising planning duration) increased with trial-by-trial value-conflict (operationalising approximate planning demand), but this increase was more pronounced in a context with generally high demand for planning. We further found that fMRI activity in the dorsal anterior cingulate cortex (dACC) increased with conflict, but this increase was more pronounced in a context with generally high demand for planning as well. Taken together, the results suggest that the dACC integrates representations of planning demand on different levels of abstraction to regulate prospective information sampling in an efficient and situation-appropriate way. This dissertation provides novel insights into the question how humans adapt their planning to the demands of the current situation. The results are consistent with the view that the regulation of planning is based on an integrated signal of the expected costs and benefits of planning. Furthermore, the results of this dissertation provide evidence that the regulation of planning in environments with real-world complexity critically relies on the brain’s powerful ability to construct and use abstract hierarchical representations.
17

Oracle-based algorithms for optimizing sophisticated decision criteria in sequential, robust and fair decision problems / Algorithmes à base d'oracles pour optimiser des critères décisionnels sophistiqués pour les problèmes de décision séquentielle, robuste et équitable

Gilbert, Hugo 11 December 2017 (has links)
Cette thèse s'inscrit dans le cadre de la théorie de la décision algorithmique, qui est une discipline au croisement de la théorie de la décision, la recherche opérationnelle et l'intelligence artificielle. Dans cette thèse, nous étudions l'utilisation de plusieurs modèles décisionnels pour résoudre des problèmes de décision séquentielle dans l'incertain, d'optimisation robuste, et d'optimisation multi-agents équitable. Pour résoudre efficacement ces problèmes, nous utilisons des méthodes de type maître-esclaves, dites à base d'oracles dans la thèse. Ces méthodes permettent de résoudre des problèmes de grande taille en procédant de manière incrémentale. Une attention particulière est portée au modèle de l'espérance d'utilité antisymétrique et bilinéaire, au modèle de l'espérance d'utilité pondérée et à leurs pendants en décision multicritère. L'intérêt de ces modèles est multiple. En effet, ils étendent les modèles standards (e.g., modèle de l'espérance d'utilité) et permettent de représenter un spectre étendu de préférences tout en conservant leurs bonnes propriétés théoriques et algorithmiques. La thèse apporte des réponses sur des aspects théoriques (e.g., résultats de complexité algorithmique) et sur des aspects opérationnels (e.g., conception de méthodes de résolution efficaces) aux problèmes soulevés par l'emploi de ces critères dans les contextes susmentionnés. / This thesis falls within the area of algorithmic decision theory, which is at the crossroads between decision theory, operational research and artificial intelligence. In this thesis, we study several decision models to solve problems in different domains: sequential decision problems under risk, robust optimization problems, and fair multi-agent optimization problems. To solve these problems efficiently, we use master-slave algorithms which solve the problem through an incremental process. These procedures, referred to as oracle methods in the thesis, make it possible to solve problems of large size. A particular attention is given to the skew-symmetric bilinear utility model, the weighted expected utility model and their counterparts in multicriteria decision making. These models are interesting at several respects. They extend the standard models (e.g., the expected utility model) and allow to represent a broader class of preferences while retaining their good theoretical and algorithmic properties. The thesis focuses both on theoretic (e.g., complexity results) and operational (e.g., design of practically efficient solution methods) aspects of the problems raised by the use of these criteria in the domains aforementioned.
18

Neurobiologically-inspired models : exploring behaviour prediction, learning algorithms, and reinforcement learning

Spinney, Sean 11 1900 (has links)
Le développement du domaine de l’apprentissage profond doit une grande part de son avancée aux idées inspirées par la neuroscience et aux études sur l’apprentissage humain. De la découverte de l’algorithme de rétropropagation à la conception d’architectures neuronales comme les Convolutional Neural Networks, ces idées ont été couplées à l’ingénierie et aux améliorations technologiques pour engendrer des algorithmes performants en utilisation aujourd’hui. Cette thèse se compose de trois articles, chacun éclairant des aspects distincts du thème central de ce domaine interdisciplinaire. Le premier article explore la modélisation prédictive avec des données d’imagerie du cerveau de haute dimension en utilisant une nouvelle approche de régularisation hybride. Dans de nombreuses applications pratiques (comme l’imagerie médicale), l’attention se porte non seulement sur la précision, mais également sur l’interprétabilité d’un modèle prédictif formé sur des données haute dimension. Cette étude s’attache à combiner la régularisation l1 et l2, qui régularisent la norme des gradients, avec l’approche récemment proposée pour la modélisation prédictive robuste, l’Invariant Learning Consistency, qui impose l’alignement entre les gradients de la même classe lors de l’entraînement. Nous examinons ici la capacité de cette approche combinée à identifier des prédicteurs robustes et épars, et nous présentons des résultats prometteurs sur plusieurs ensembles de données. Cette approche tend à améliorer la robustesse des modèles épars dans presque tous les cas, bien que les résultats varient en fonction des conditions. Le deuxième article se penche sur les algorithmes d’apprentissage inspirés de la biologie, en se concentrant particulièrement sur la méthode Difference Target Propagation (DTP) tout en l’intégrant à l’optimisation Gauss-Newton. Le développement de tels algorithmes biologiquement plausibles possède une grande importance pour comprendre les processus d’apprentissage neuronale, cependant leur extensibilité pratique à des tâches réelles est souvent limitée, ce qui entrave leur potentiel explicatif pour l’apprentissage cérébral réel. Ainsi, l’exploration d’algorithmes d’apprentissage qui offrent des fondements théoriques solides et peuvent rivaliser avec la rétropropagation dans des tâches complexes gagne en importance. La méthode Difference Target Propagation (DTP) se présente comme une candidate prometteuse, caractérisée par son étroite relation avec les principes de l’optimisation Gauss-Newton. Néanmoins, la rigueur de cette relation impose des limites, notamment en ce qui concerne la formation couche par couche des poids synaptiques du chemin de rétroaction, une configuration considérée comme plus biologiquement plausible. De plus, l’alignement entre les mises à jour des poids DTP et les gradients de perte est conditionnel et dépend des scénarios d’architecture spécifiques. Cet article relève ces défis en introduisant un schéma innovant d’entraînement des poids de rétroaction. Ce schéma harmonise la DTP avec la BP, rétablissant la viabilité de la formation des poids de rétroaction couche par couche sans compromettre l’intégrité théorique. La validation empirique souligne l’efficacité de ce schéma, aboutissant à des performances exceptionnelles de la DTP sur CIFAR-10 et ImageNet 32×32. Enfin, le troisième article explore la planification efficace dans la prise de décision séquentielle en intégrant le calcul adaptatif à des architectures d’apprentissage profond existantes, dans le but de résoudre des casse-tête complexes. L’étude introduit des principes de calcul adaptatif inspirés des processus cognitifs humains, ainsi que des avancées récentes dans le domaine du calcul adaptatif. En explorant en profondeur les comportements émergents du modèle de mémoire adaptatif entraîné, nous identifions plusieurs comportements reconnaissables similaires aux processus cognitifs humains. Ce travail élargit la discussion sur le calcul adaptatif au-delà des gains évidents en efficacité, en explorant les comportements émergents en raison des contraintes variables généralement attribuées aux processus de la prise de décision chez les humains. / The development of the field of deep learning has benefited greatly from biologically inspired insights from neuroscience and the study of human learning more generally, from the discovery of backpropagation to neural architectures such as the Convolutional Neural Network. Coupled with engineering and technological improvements, the distillation of good strategies and algorithms for learning inspired from biological observation is at the heart of these advances. Although it would be difficult to enumerate all useful biases that can be learned by observing humans, they can serve as a blueprint for intelligent systems. The following thesis is composed of three research articles, each shedding light on distinct facets of the overarching theme. The first article delves into the realm of predictive modeling on high-dimensional fMRI data, a landscape where not only accuracy but also interpretability are crucial. Employing a hybrid approach blending l1 and l2 regularization with Invariant Learning Consistency, this study unveils the potential of identifying robust, sparse predictors capable of transmuting noise laden datasets into coherent observations useful for pushing the field forward. Conversely, the second article delves into the domain of biologically-plausible learning algorithms, a pivotal endeavor in the comprehension of neural learning processes. In this context, the investigation centers upon Difference Target Propagation (DTP), a prospective framework closely related to Gauss-Newton optimization principles. This exploration delves into the intricate interplay between DTP and the tenets of biologically-inspired learning mechanisms, revealing an innovative schema for training feedback weights. This schema reinstates the feasibility of layer-wise feedback weight training within the DTP framework, while concurrently upholding its theoretical integrity. Lastly, the third article explores the role of memory in sequential decision-making, and proposes a model with adaptive memory. This domain entails navigating complex decision sequences within discrete state spaces, where the pursuit of efficiency encounters difficult scenarios such as the risk of critical irreversibility. The study introduces adaptive computation principles inspired by human cognitive processes, as well as recent advances in adaptive computing. By studying in-depth the emergent behaviours exhibited by the trained adaptive memory model, we identify several recognizable behaviours akin to human cognitive processes. This work expands the discussion of adaptive computing beyond the obvious gains in efficiency, but to behaviours emerging due to varying constraints usually attributable to dynamic response times in humans.
19

Contributions to Simulation-based High-dimensional Sequential Decision Making / Contributions sur la prise de décision séquentielle basée sur des simulations dans des environnements complexes de grande dimension

Hoock, Jean-Baptiste 10 April 2013 (has links)
Ma thèse s'intitule « Contributions sur la prise de décision séquentielle basée sur des simulations dans des environnements complexes de grande dimension ». Le cadre de la thèse s'articule autour du jeu, de la planification et des processus de décision markovien. Un agent interagit avec son environnement en prenant successivement des décisions. L'agent part d'un état initial jusqu'à un état final dans lequel il ne peut plus prendre de décision. A chaque pas de temps, l'agent reçoit une observation de l'état de l'environnement. A partir de cette observation et de ses connaissances, il prend une décision qui modifie l'état de l'environnement. L'agent reçoit en conséquence une récompense et une nouvelle observation. Le but est de maximiser la somme des récompenses obtenues lors d'une simulation qui part d'un état initial jusqu'à un état final. La politique de l'agent est la fonction qui, à partir de l'historique des observations, retourne une décision. Nous travaillons dans un contexte où (i) le nombre d'états est immense, (ii) les récompenses apportent peu d'information, (iii) la probabilité d'atteindre rapidement un bon état final est faible et (iv) les connaissances a priori de l'environnement sont soit inexistantes soit difficilement exploitables. Les 2 applications présentées dans cette thèse répondent à ces contraintes : le jeu de Go et le simulateur 3D du projet européen MASH (Massive Sets of Heuristics). Afin de prendre une décision satisfaisante dans ce contexte, plusieurs solutions sont apportées :1. simuler en utilisant le compromis exploration/exploitation (MCTS)2. réduire la complexité du problème par des recherches locales (GoldenEye)3. construire une politique qui s'auto-améliore (RBGP)4. apprendre des connaissances a priori (CluVo+GMCTS) L'algorithme Monte-Carlo Tree Search (MCTS) est un algorithme qui a révolutionné le jeu de Go. A partir d'un modèle de l'environnement, MCTS construit itérativement un arbre des possibles de façon asymétrique en faisant des simulations de Monte-Carlo et dont le point de départ est l'observation courante de l'agent. L'agent alterne entre l'exploration du modèle en prenant de nouvelles décisions et l'exploitation des décisions qui obtiennent statistiquement une bonne récompense cumulée. Nous discutons de 2 moyens pour améliorer MCTS : la parallélisation et l'ajout de connaissances a priori. La parallélisation ne résout pas certaines faiblesses de MCTS ; notamment certains problèmes locaux restent des verrous. Nous proposons un algorithme (GoldenEye) qui se découpe en 2 parties : détection d'un problème local et ensuite sa résolution. L'algorithme de résolution réutilise des principes de MCTS et fait ses preuves sur une base classique de problèmes difficiles. L'ajout de connaissances à la main est laborieuse et ennuyeuse. Nous proposons une méthode appelée Racing-based Genetic Programming (RBGP) pour ajouter automatiquement de la connaissance. Le point fort de cet algorithme est qu'il valide rigoureusement l'ajout d'une connaissance a priori et il peut être utilisé non pas pour optimiser un algorithme mais pour construire une politique. Dans certaines applications telles que MASH, les simulations sont coûteuses en temps et il n'y a ni connaissance a priori ni modèle de l'environnement; l'algorithme Monte-Carlo Tree Search est donc inapplicable. Pour rendre MCTS applicable dans MASH, nous proposons une méthode pour apprendre des connaissances a priori (CluVo). Nous utilisons ensuite ces connaissances pour améliorer la rapidité de l'apprentissage de l'agent et aussi pour construire un modèle. A partir de ce modèle, nous utilisons une version adaptée de Monte-Carlo Tree Search (GMCTS). Cette méthode résout de difficiles problématiques MASH et donne de bons résultats dans une application dont le but est d'améliorer un tirage de lettres. / My thesis is entitled "Contributions to Simulation-based High-dimensional Sequential Decision Making". The context of the thesis is about games, planning and Markov Decision Processes. An agent interacts with its environment by successively making decisions. The agent starts from an initial state until a final state in which the agent can not make decision anymore. At each timestep, the agent receives an observation of the state of the environment. From this observation and its knowledge, the agent makes a decision which modifies the state of the environment. Then, the agent receives a reward and a new observation. The goal is to maximize the sum of rewards obtained during a simulation from an initial state to a final state. The policy of the agent is the function which, from the history of observations, returns a decision. We work in a context where (i) the number of states is huge, (ii) reward carries little information, (iii) the probability to reach quickly a good final state is weak and (iv) prior knowledge is either nonexistent or hardly exploitable. Both applications described in this thesis present these constraints : the game of Go and a 3D simulator of the european project MASH (Massive Sets of Heuristics). In order to take a satisfying decision in this context, several solutions are brought : 1. Simulating with the compromise exploration/exploitation (MCTS) 2. Reducing the complexity by local solving (GoldenEye) 3. Building a policy which improves itself (RBGP) 4. Learning prior knowledge (CluVo+GMCTS) Monte-Carlo Tree Search (MCTS) is the state of the art for the game of Go. From a model of the environment, MCTS builds incrementally and asymetrically a tree of possible futures by performing Monte-Carlo simulations. The tree starts from the current observation of the agent. The agent switches between the exploration of the model and the exploitation of decisions which statistically give a good cumulative reward. We discuss 2 ways for improving MCTS : the parallelization and the addition of prior knowledge. The parallelization does not solve some weaknesses of MCTS; in particular some local problems remain challenges. We propose an algorithm (GoldenEye) which is composed of 2 parts : detection of a local problem and then its resolution. The algorithm of resolution reuses some concepts of MCTS and it solves difficult problems of a classical database. The addition of prior knowledge by hand is laborious and boring. We propose a method called Racing-based Genetic Programming (RBGP) in order to add automatically prior knowledge. The strong point is that RBGP rigorously validates the addition of a prior knowledge and RBGP can be used for building a policy (instead of only optimizing an algorithm). In some applications such as MASH, simulations are too expensive in time and there is no prior knowledge and no model of the environment; therefore Monte-Carlo Tree Search can not be used. So that MCTS becomes usable in this context, we propose a method for learning prior knowledge (CluVo). Then we use pieces of prior knowledge for improving the rapidity of learning of the agent and for building a model, too. We use from this model an adapted version of Monte-Carlo Tree Search (GMCTS). This method solves difficult problems of MASH and gives good results in an application to a word game.
20

Monte Carlo Tree Search for Continuous and Stochastic Sequential Decision Making Problems / Monte Carlo Tree Search pour les problèmes de décision séquentielle en milieu continus et stochastiques

Couetoux, Adrien 30 September 2013 (has links)
Dans cette thèse, nous avons étudié les problèmes de décisions séquentielles, avec comme application la gestion de stocks d'énergie. Traditionnellement, ces problèmes sont résolus par programmation dynamique stochastique. Mais la grande dimension, et la non convexité du problème, amènent à faire des simplifications sur le modèle pour pouvoir faire fonctionner ces méthodes.Nous avons donc étudié une méthode alternative, qui ne requiert pas de simplifications du modèle: Monte Carlo Tree Search (MCTS). Nous avons commencé par étendre le MCTS classique (qui s’applique aux domaines finis et déterministes) aux domaines continus et stochastiques. Pour cela, nous avons utilisé la méthode de Double Progressive Widening (DPW), qui permet de gérer le ratio entre largeur et profondeur de l’arbre, à l’aide de deux méta paramètres. Nous avons aussi proposé une heuristique nommée Blind Value (BV) pour améliorer la recherche de nouvelles actions, en utilisant l’information donnée par les simulations passées. D’autre part, nous avons étendu l’heuristique RAVE aux domaines continus. Enfin, nous avons proposé deux nouvelles méthodes pour faire remonter l’information dans l’arbre, qui ont beaucoup amélioré la vitesse de convergence sur deux cas tests.Une part importante de notre travail a été de proposer une façon de mêler MCTS avec des heuristiques rapides pré-existantes. C’est une idée particulièrement intéressante dans le cas de la gestion d’énergie, car ces problèmes sont pour le moment résolus de manière approchée. Nous avons montré comment utiliser Direct Policy Search (DPS) pour rechercher une politique par défaut efficace, qui est ensuite utilisée à l’intérieur de MCTS. Les résultats expérimentaux sont très encourageants.Nous avons aussi appliqué MCTS à des processus markoviens partiellement observables (POMDP), avec comme exemple le jeu de démineur. Dans ce cas, les algorithmes actuels ne sont pas optimaux, et notre approche l’est, en transformant le POMDP en MDP, par un changement de vecteur d’état.Enfin, nous avons utilisé MCTS dans un cadre de méta-bandit, pour résoudre des problèmes d’investissement. Le choix d’investissement est fait par des algorithmes de bandits à bras multiples, tandis que l’évaluation de chaque bras est faite par MCTS.Une des conclusions importantes de ces travaux est que MCTS en continu a besoin de très peu d’hypothèses (uniquement un modèle génératif du problème), converge vers l’optimum, et peut facilement améliorer des méthodes suboptimales existantes. / In this thesis, we study sequential decision making problems, with a focus on the unit commitment problem. Traditionally solved by dynamic programming methods, this problem is still a challenge, due to its high dimension and to the sacrifices made on the accuracy of the model to apply state of the art methods. We investigate on the applicability of Monte Carlo Tree Search methods for this problem, and other problems that are single player, stochastic and continuous sequential decision making problems. We started by extending the traditional finite state MCTS to continuous domains, with a method called Double Progressive Widening (DPW). This method relies on two hyper parameters, and determines the ratio between width and depth in the nodes of the tree. We developed a heuristic called Blind Value (BV) to improve the exploration of new actions, using the information from past simulations. We also extended the RAVE heuristic to continuous domain. Finally, we proposed two new ways of backing up information through the tree, that improved the convergence speed considerably on two test cases.An important part of our work was to propose a way to mix MCTS with existing powerful heuristics, with the application to energy management in mind. We did so by proposing a framework that allows to learn a good default policy by Direct Policy Search (DPS), and to include it in MCTS. The experimental results are very positive.To extend the reach of MCTS, we showed how it could be used to solve Partially Observable Markovian Decision Processes, with an application to game of Mine Sweeper, for which no consistent method had been proposed before.Finally, we used MCTS in a meta-bandit framework to solve energy investment problems: the investment decision was handled by classical bandit algorithms, while the evaluation of each investment was done by MCTS.The most important take away is that continuous MCTS has almost no assumption (besides the need for a generative model), is consistent, and can easily improve existing suboptimal solvers by using a method similar to what we proposed with DPS.

Page generated in 0.5099 seconds