• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 166
  • 18
  • 1
  • 1
  • Tagged with
  • 189
  • 189
  • 134
  • 85
  • 43
  • 39
  • 39
  • 34
  • 33
  • 27
  • 25
  • 23
  • 23
  • 22
  • 18
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

PTV - Pacote de Tempo de Validade para o SGBD Oracle

Pinheiro, Sandro Favin January 2003 (has links)
Embora há muito tempo já se tenha conhecimento da importância da recuperação de informações temporais, não existe um SGBD temporal que tenha sido desenvolvido unicamente para aplicações comerciais, que supra todas as necessidades e abranja todos os aspectos temporais necessários a estas aplicações. O SGBD da Oracle, a partir da versão 8i, possibilita a inserção de características temporais similares às de tempo de transação no BD, através de um pacote de tempo denominado Time Series Cartridge. Entretanto, em muitos casos, a utilização deste cartucho de tempo não é suficiente para que se possa implementar por completo tudo o que foi especificado na modelagem do sistema. A modelagem completa da realidade só é alcançada se forem utilizadas em conjunto as características de tempo de transação e de tempo de validade no banco de dados. Neste trabalho são sugeridos e implementados mecanismos para a inserção e o gerenciamento do tempo de validade no SGBD Oracle. O tempo de validade é administrado através da execução de funções, procedimentos, gatilhos e objetos, organizados em forma de um pacote, de maneira que este possa ser utilizado em conjunto com o Time Series Cartridge.
22

Adaptação dinâmica do timeout de detectores de defeitos através do uso de séries temporais

Nunes, Raul Ceretta January 2003 (has links)
Uma aplicação distribuída freqüentemente tem que ser especificada e implementada para executar sobre uma rede de longa distância (wide-área network-WAN), tipicamente a Internet. Neste ambiente, tais aplicações são sujeitas a defeitos do tipo colapso(falha geral num dado nó), teporização (flutuações na latência de comunicação) e omissão (perdas de mensagens). Para evitar que este defeitos gerem comseqüências indesejáveis e irreparáveis na aplicação, explora-se técnicas para tolerá-los. A abstração de detectores de defeitos não confiáveis auxilia a especificação e trato de algoritmos distribuídos utilizados em sistemas tolerantes a falhas, pois permite uma modelagem baseada na noção de estado (suspeito ou não suspeito) dos componentes (objetos, processo ou processadores) da aplicação. Para garantir terminação, os algoritmos de detecção de defeitos costumam utilizar a noção de limites de tempo de espera (timeout). Adicionalmente, para minimizar seu erro (falasas suspeitas) e não comprometer seu desempenho (tempo para detecção de um defeito), alguns detectores de defeitos ajustam dinamicamente o timeout com base em previsões do atraso de comunicação. Esta tese explora o ajuste dinâmico do timeout realizado de acordo com métodos de previsão baseados na teoria de séries temporais. Tais métodos supõem uma amostragem periódica e fornececm estimativas relativamente confiáveis do comportamento futuro da variável aleatória. Neste trabalho é especificado uma interface para transformar uma amostragem aperiódica do atraso de ida e volta de uma mensagem (rtt) numa amostragem periódica, é analisado comportamento de séries reais do rtt e a precisão dee sete preditores distintos (três baseados em séries temporais e quatrro não), e é avaliado a influência destes preditores na qualidade de serviço de um detector de defeitos do estilopull. Uma arquitetura orientada a objetos que possibilita a escolha/troca de algoritmos de previsão e de margem de segurança é também proposta. Como resultado, esta tese mostra: (i) que embora a amostragem do rtt seja aperiódica, pode-se modelá-la como sendo uma série temporal (uma amostragem periódica) aplciando uma interface de transformação; (ii) que a série temporal rtt é não estacionária na maioria dos casos de teste, contradizendo a maioria das hipóteses comumente consideradas em detectores de defeitos; (iii) que dentre sete modelos de predição, o modelo ARIMA (autoregressive integrated moving-average model) é o que oferece a melhor precisão na predição de atrasos de comunicação, em termos do erro quadrático médio: (iv) que o impacto de preditores baseados em séries temporais na qualidade de serviço do detector de defeitos não significativo em relação a modelos bem mais simples, mas varia dependendo da margem de segurança adotada; e (v) que um serviço de detecção de defeitos pode possibilitar a fácil escolha de algoritmos de previsão e de margens de segurança, pois o preditor pode ser modelado como sendo um módulo dissociado do detector.
23

Análise e classificação de séries temporais não estacionárias utilizando métodos não-lineares / Analysis and classification of nonstationary time series with nonlinear methods

Thielo, Marcelo Resende January 2000 (has links)
Neste trabalho fazemos revisão de alguns dos principais métodos para análise não-linear de séries temporais originadas a partir de sistemas de baixa dimensionalidade com dinâmica predominantemente determinística, dando ênfase ao problema de classificação/clusterização nãosupervisionada destas mesmas séries. Várias medidas de dissimilaridade são utilizadas em conjunto com métodos heurísticos baseados em algoritmos estocásticos, para a organização de segmentos de séries temporais não estacionárias em grupos com características em comum, na tentativa de associar a estes alguma característica clínica previamente conhecida. O método é implementado com diferentes medidas de dissimilaridade e um experimento feito com séries temporais sintéticas (obtidas a partir de simulação numérica) com fins de validação e posteriormente aplicado a um problema real, o problema de segmentação de estágios de sono. Os resultados indicam certa promissoriedade do método para aplicação na classificação estágios de sono em eletroencefalogramas. / In this work we make a review of some of the main methods available for nonlinear time series analysis for low-dimensional deterministic systems, giving emphasis to the problem of unsupervised classification/clustering of this kind of data. Various dissimilarity measures are used together with heuristic search methods based on stochastic algorithms to organize segments of one (big) nonstationary time series in groups with common characteristics, trying to relate these groups to some known clinical property. The method is implemented with different dissimilarity measures and one experiment made with synthetic (generated by numerical simulations) time series for validation and lately applied to a real problem, the problem of sleep stages segmentation. The results look promising with respect to the applicability of the method to classify sleep stages in electroencephalographic recordings.
24

Forecasting brazilian inflation with singular spectrum analysis

Matsuoka, Danilo Hiroshi January 2016 (has links)
O objetivo deste artigo é avaliar previsões da inflação brasileira a partir do método não-paramétrico de Análise Espectral Singular (SSA). O exercício de previsão utiliza o esquema de janelas rolantes. Diferentes estratégias de combinação de previsões e procedimentos de seleção de variáveis para métodos multivariados foram contempladas. Para robustez, cinco horizontes de previsão foram utilizados. A avaliação das previsões considera diversos procedimentos e medidas estatísticas para oferecer conclusões confiáveis, incluindo razões de erro quadrático médio de previsão, teste de igualdade condicional de habilidade preditiva, diferenças de erro quadrático médio de previsão cumulativas e Model Confidence Set. Os resultados mostram que o SSA supera consistentemente os métodos competidores. Quase todas as previsões SSA superam os competidores em termos de erro quadrático médio de previsão, e em vários casos, com significância estatística. A análise da porção fora da amostra indica superioridade em performance relativa do SSA, especialmente no período de choque nos preços de energia elétrica. Adicionalmente, métodos SSA sempre foram incluídos no conjunto superior do Model Confidence Set. A falta de estudos relacionados com previsão da inflação brasileira e a relativa escassez de análises de previsões via métodos não-paramétricos ressaltam a relevância deste artigo. Não existem pesquisas na literatura de previsão de inflação brasileira aplicando SSA. Uma das estratégias de combinação de previsões aplicadas neste artigo não é comumente encontrada na literatura, na medida em que envolve combinações de diferentes especificações para cada método de previsão. Adicionalmente, restrições de parâmetros foram impostas nas previsões SSA, uma prática não reportada na literatura. / The purpose of this paper is to evaluate Brazilian inflation forecasts produced by the nonparametric method Singular Spectrum Analysis (SSA). This forecasting exercise employs rolling windows scheme. Different strategies of forecast combinations and variable selection procedures for multivariate methods were contemplated. For robustness, five forecast horizons were used. The forecast evaluation considers several statistical measures and procedures to offer reliable conclusions, including mean squared forecast error ratios, tests of equal conditional predictive ability, cumulative square forecast error difference and Model Confidence Set. The results show that SSA consistently outperforms the competitive methods. Almost all SSA forecasts outperforms the competitors in the mean squared forecast error sense, and several with statistical significance. Analysis of the out-of-sample portion indicates relative superior performance of SSA, especially over the period of electricity shock of prices. SSA methods were always included in the superior set of Model Confidence Set procedures. The lack of studies related to Brazilian inflation forecasting and the relative scarcity of nonparametric methods of forecasting analysis highlights the relevance of this paper. There is no research in Brazilian inflation literature applying SSA. One of the forecast combination strategies applied in this paper is not commonly found in the literature, as it involves combinations of different specifications for each forecast method. Additionally, parameter restrictions on SSA forecasts were imposed, a practice which is not reported in the literature.
25

Metodologia para previsão de demanda baseada em cenários utilizando densidade de carga e temperatura

Rocha Junior, Eloy de Paula 22 March 2013 (has links)
Resumo: A análise de cenários é uma ferramenta auxiliar que descreve determinadas características para uma previsão de carga. Para sua composição é preciso fazer um mapeamento adequado das variáveis a serem consideradas, assim como qual o peso de cada uma delas na análise decisória do cenário. A partir da composição de cenários é possível estabelecer um direcionamento estratégico para as previsões. O problema a ser abordado neste trabalho é realizar previsão de demanda para uma concessionária com base em um histórico de demandas medidas e premissas que caracterizam a carga de uma região escolhida para o estudo, através do conceito de densidade de carga. Estabelecer fatores multiplicativos para agregar a influência da temperatura e número de consumidores nas previsões futuras, assim como acrescentar informações de modificações topológicas. As análises foram feitas com base em séries temporais e os testes dos vetores de dados foram analisados com aplicação de redes neurais. Para validar e estabelecer uma análise comparativa entre os cenários obtidos foi aplicado a metodologia em uma área observável na região Oeste do Paraná, sinalizando possibilidades de arranjos entre variáveis para compor o melhor cenário a ser elaborado para uma previsão futura.
26

Análise e classificação de séries temporais não estacionárias utilizando métodos não-lineares / Analysis and classification of nonstationary time series with nonlinear methods

Thielo, Marcelo Resende January 2000 (has links)
Neste trabalho fazemos revisão de alguns dos principais métodos para análise não-linear de séries temporais originadas a partir de sistemas de baixa dimensionalidade com dinâmica predominantemente determinística, dando ênfase ao problema de classificação/clusterização nãosupervisionada destas mesmas séries. Várias medidas de dissimilaridade são utilizadas em conjunto com métodos heurísticos baseados em algoritmos estocásticos, para a organização de segmentos de séries temporais não estacionárias em grupos com características em comum, na tentativa de associar a estes alguma característica clínica previamente conhecida. O método é implementado com diferentes medidas de dissimilaridade e um experimento feito com séries temporais sintéticas (obtidas a partir de simulação numérica) com fins de validação e posteriormente aplicado a um problema real, o problema de segmentação de estágios de sono. Os resultados indicam certa promissoriedade do método para aplicação na classificação estágios de sono em eletroencefalogramas. / In this work we make a review of some of the main methods available for nonlinear time series analysis for low-dimensional deterministic systems, giving emphasis to the problem of unsupervised classification/clustering of this kind of data. Various dissimilarity measures are used together with heuristic search methods based on stochastic algorithms to organize segments of one (big) nonstationary time series in groups with common characteristics, trying to relate these groups to some known clinical property. The method is implemented with different dissimilarity measures and one experiment made with synthetic (generated by numerical simulations) time series for validation and lately applied to a real problem, the problem of sleep stages segmentation. The results look promising with respect to the applicability of the method to classify sleep stages in electroencephalographic recordings.
27

Adaptação dinâmica do timeout de detectores de defeitos através do uso de séries temporais

Nunes, Raul Ceretta January 2003 (has links)
Uma aplicação distribuída freqüentemente tem que ser especificada e implementada para executar sobre uma rede de longa distância (wide-área network-WAN), tipicamente a Internet. Neste ambiente, tais aplicações são sujeitas a defeitos do tipo colapso(falha geral num dado nó), teporização (flutuações na latência de comunicação) e omissão (perdas de mensagens). Para evitar que este defeitos gerem comseqüências indesejáveis e irreparáveis na aplicação, explora-se técnicas para tolerá-los. A abstração de detectores de defeitos não confiáveis auxilia a especificação e trato de algoritmos distribuídos utilizados em sistemas tolerantes a falhas, pois permite uma modelagem baseada na noção de estado (suspeito ou não suspeito) dos componentes (objetos, processo ou processadores) da aplicação. Para garantir terminação, os algoritmos de detecção de defeitos costumam utilizar a noção de limites de tempo de espera (timeout). Adicionalmente, para minimizar seu erro (falasas suspeitas) e não comprometer seu desempenho (tempo para detecção de um defeito), alguns detectores de defeitos ajustam dinamicamente o timeout com base em previsões do atraso de comunicação. Esta tese explora o ajuste dinâmico do timeout realizado de acordo com métodos de previsão baseados na teoria de séries temporais. Tais métodos supõem uma amostragem periódica e fornececm estimativas relativamente confiáveis do comportamento futuro da variável aleatória. Neste trabalho é especificado uma interface para transformar uma amostragem aperiódica do atraso de ida e volta de uma mensagem (rtt) numa amostragem periódica, é analisado comportamento de séries reais do rtt e a precisão dee sete preditores distintos (três baseados em séries temporais e quatrro não), e é avaliado a influência destes preditores na qualidade de serviço de um detector de defeitos do estilopull. Uma arquitetura orientada a objetos que possibilita a escolha/troca de algoritmos de previsão e de margem de segurança é também proposta. Como resultado, esta tese mostra: (i) que embora a amostragem do rtt seja aperiódica, pode-se modelá-la como sendo uma série temporal (uma amostragem periódica) aplciando uma interface de transformação; (ii) que a série temporal rtt é não estacionária na maioria dos casos de teste, contradizendo a maioria das hipóteses comumente consideradas em detectores de defeitos; (iii) que dentre sete modelos de predição, o modelo ARIMA (autoregressive integrated moving-average model) é o que oferece a melhor precisão na predição de atrasos de comunicação, em termos do erro quadrático médio: (iv) que o impacto de preditores baseados em séries temporais na qualidade de serviço do detector de defeitos não significativo em relação a modelos bem mais simples, mas varia dependendo da margem de segurança adotada; e (v) que um serviço de detecção de defeitos pode possibilitar a fácil escolha de algoritmos de previsão e de margens de segurança, pois o preditor pode ser modelado como sendo um módulo dissociado do detector.
28

Um modelo composto para realizar previsão de demanda através da integração da combinação de previsões e do ajuste baseado na opinião

Werner, Liane January 2005 (has links)
Resumo não disponível
29

PTV - Pacote de Tempo de Validade para o SGBD Oracle

Pinheiro, Sandro Favin January 2003 (has links)
Embora há muito tempo já se tenha conhecimento da importância da recuperação de informações temporais, não existe um SGBD temporal que tenha sido desenvolvido unicamente para aplicações comerciais, que supra todas as necessidades e abranja todos os aspectos temporais necessários a estas aplicações. O SGBD da Oracle, a partir da versão 8i, possibilita a inserção de características temporais similares às de tempo de transação no BD, através de um pacote de tempo denominado Time Series Cartridge. Entretanto, em muitos casos, a utilização deste cartucho de tempo não é suficiente para que se possa implementar por completo tudo o que foi especificado na modelagem do sistema. A modelagem completa da realidade só é alcançada se forem utilizadas em conjunto as características de tempo de transação e de tempo de validade no banco de dados. Neste trabalho são sugeridos e implementados mecanismos para a inserção e o gerenciamento do tempo de validade no SGBD Oracle. O tempo de validade é administrado através da execução de funções, procedimentos, gatilhos e objetos, organizados em forma de um pacote, de maneira que este possa ser utilizado em conjunto com o Time Series Cartridge.
30

Uma metodologia para a previsão de demanda de produtos utilizando redes neurais artificiais de funções de bases radiais modificadas e uma proposta de logística de reposição

Scarpin, Cassius Tadeu 11 May 2012 (has links)
Resumo: Um dos principais problemas enfrentados no planejamento estratégico da cadeia de suprimentos de qualquer empresa é a previsão de demanda dos produtos e/ou serviços necessários. Obter informações da tendência do comportamento da demanda futura é imprescindível para a melhoria do nível de serviço em todos os setores de uma empresa. O problema abordado neste trabalho é a previsão de vendas de produtos aplicada a um sistema de reposição no varejo supermercadista. A programação de reposição de produtos pode ser otimizada de forma a maximizar a satisfação dos clientes (encontrando seus produtos nas lojas), minimizando a ruptura (falta de produtos nas gôndolas) dos mesmos e evitando a superestocagem. Estuda-se neste trabalho, de uma forma particular, o problema da ruptura que pode ocorrer na transição de produtos do Centro de Distribuição (CD) à Loja (CD-Loja). Utiliza-se, para isso, um método quantitativo clássico para a previsão de séries temporais, o algoritmo das Redes Neurais Artificiais de Função de Base Radial ou, simplesmente, Redes de Bases Radiais (RBF). Propõe-se neste trabalho, além de uma modificação no algoritmo das RBF, também um método qualitativo de interpretação dos resultados de previsão, com o estabelecimento de limites de estoque para cada produto de cada loja da rede. Analisou-se vários algoritmos de agrupamentos de padrões que podem ser utilizados na 2ª etapa do algoritmo das RBF e uma forma otimizada para se definir os seus parâmetros. Para melhor ilustrar a proposta, tomou-se por base dados reais de uma rede supermercadista, a qual utilizava o algoritmo das médias móveis para a previsão das séries temporais aplicado a um método de reposição baseada no tradicional método do ponto de pedido. Os resultados obtidos foram altamente satisfatórios reduzindo a ruptura CD-Loja, em média, de 12% para menos de 1% nos hipermercados e de 15% para cerca de 2% nos supermercados, gerando inúmeras vantagens competitivas para a empresa.

Page generated in 0.1806 seconds