• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modulators of Vibrio cholerae predator interaction and virulence

Lindmark, Barbro January 2009 (has links)
Vibrio cholerae, the causal agent of cholera typically encodes two critical virulence factors: cholera toxin (CT), which is primarily responsible for the diarrhoeal purge, and toxin-co-regulated pilus (TCP), an essential colonisation factor. Nontoxigenic strains expressing TCP can efficiently acquire the CT gene through lysogenic conversion with CTXΦ, a filamentous phage that encodes CT and uses TCP as a receptor.  V. cholerae is a Gram-negative bacterium and a natural inhabitant of estuarine and coastal waters throughout both temperate and tropical regions of the world. In the aquatic environment, V. cholerae encounters several environmental stresses, such as change in salinity, UV stress, nutrient limitation, temperature fluctuations, viral infections and protozoan predation. To fully understand the pathogenic and virulence potential of V. cholerae, knowledge is required of its interactions with, not only human, but also environmental factors. By using the nematode Caenorhabditis elegans as host model, we were able to identify a previously uncharacterised protein, the extracellular protease PrtV. PrtV was shown to be required for the killing of. elegans and also necessary for survival from grazing by the ciliate Tetrahymena pyriformis and the flagellate Cafeteria roenbergensis. The PrtV protein, which belongs to a M6 family of metallopeptidases was cloned and purified for further characterisations. The purified PrtV was cytotoxic against the human intestinal cell line HCT8. By using human blood plasma, fibrinogen, fibronectin and plasminogen were identified as candidate substrates for the PrtV protease. Outer membrane vesicles (OMVs) are released to the surroundings by most Gram-negative bacteria through “bulging and pinching” of the outer membrane.  OMVs have been shown to contain many virulence factors important in pathogenesis. Therefore, we investigated the association of PrtV with OMVs. PrtV was not associated with OMVs from the wild type O1 strain. In contrast, in an LPS mutant lacking two sugar chains in the core oligosaccharide PrtV was found to be associated with the OMVs. The OMV-associated PrtV was shown to be proteolytically and cytotoxically active. V. cholerae strains are grouped into >200 serogroups. Only the O1 and O139 serogroups have been associated with pandemic cholera, a severe diarrhoeal disease.  All other serogroups are collectively referred to as non-O1 non-O139 V. cholerae. Non-O1 non-O139 V. cholerae can cause gastroenteritis and extraintestinal infections, but unlike O1 and O139 strains of V. cholerae, little is known about the virulence gene content and their potential to become human pathogens. We analysed clinical and environmental non-O1 non-O139 isolates for their putative virulence traits. None of them carry the genes encoding CT or the TCP, but other putative virulence factors were present in these isolates. The incidence of serum resistance was found to vary considerably and was independent of encapsulation. Three strains were strongly serum-resistant, and these same strains could also kill C. elegans.
2

Serum and Acid resistance in Campylobacter jejuni : What is the role of the phase-variable gene wcbK within the capsule polysaccharide operon?

Gummesson, Wictor January 2020 (has links)
C. jejuni, a pathogenic gram-negative bacterium infecting the human gastrointestinal tract has lately been shown to cause bacteraemia to a wider extent than previously known. In some genotypes, this is thought to be related to GDP-Mannose 4,6 dehydratase encoded by the gene wcbK in the capsule polysaccharide operon and its potential phase variated regulated nature mediated by a homopolymeric guanine tract. This potential regulatory tract has been reported to be controlling the survival in serum by switching expression of wcbK “ON” or “OFF”. This master thesis report evaluates C. jejuni’s ability to survive human serum and low pH, as proxies for the conditions that bacteria meet in human blood or the stomach, respectively. By next generation sequencing, I evaluated the correlation between survival in human serum and the wcbK gene’s “ON” or “OFF” state. Furthermore, the temporal stability of the serum resistant phenotype was assessed over multiple generations. I found that a serum resistant fraction of the C. jejuni population could be enriched by selection in normal human serum. The serum resistant part of the population did not decrease during repeated subculture for 10 generations in bacterial culture medium. However, there was no correlation between the extent of serum resistance in the population and the “ON” or “OFF” state of the wcbK gene.
3

Is the Expression of Hemolysin Co-regulated Protein (Hcp) Associated with Serum Resistance in Aggregatibacter aphrophilus?

Settlin, Clara, Hot, Selva January 2023 (has links)
Abstract  Aggregatibacter aphrophilus, a Gram negative bacterium, found in the oral cavity, causing cerebral abscesses and infective endocarditis, has been shown to be serum resistant in previous studies. Bacterial secretion systems are important for bacteria as they transfer virulence factors into other bacteria or host cells as an attack. A. aphrophilus encodes a type VI secretion system, which is a spike-like membrane protein, mainly consisting of a hemolysin co-regulated protein (Hcp). In this work, it was tested if Hcp would contribute to serum resistance of A. aphrophilus. Firstly, to assess Hcp contribution to serum resistance, a bacterial serum killing assay-method was used and data was collected from three independent experiments. Two strains of A. aphrophilus were used in the experiments: the laboratory strain HK83 and a HK83 hcp mutant strain. The results showed that Hcp provided no significant effect on serum resistance of A. aphrophilus. Secondly, optical density measurements were made for growth curve analysis, to determine if the HK83 hcp mutant strain had an impact in growth compared to HK83. The results indicated that the HK83 hcp mutant strain had a somewhat reduced growth compared to its parental strain.

Page generated in 0.0789 seconds