• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 26
  • 22
  • 18
  • 3
  • 2
  • 1
  • Tagged with
  • 73
  • 26
  • 19
  • 15
  • 14
  • 10
  • 9
  • 9
  • 8
  • 8
  • 6
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Total Synthesis Of Sesquiterpenes, Seychellene, Trachyopsanes And Bisepoxysecocalamenenes

Ravi, G 07 1900 (has links)
Among Nature's creation, terpenoids are more versatile and exciting natural products. In a remarkable display of synthetic ingenuity and creativity, nature has endowed terpenes with a bewildering array of carbocyclic frameworks with unusual assemblage of rings and functionalities. This phenomenal structural diversity of terpenes makes them ideal targets for developing and testing new synthetic strategies for efficient articulation of carbocyclic frameworks. The thesis entitled “Total Synthesis of Sesquiterpenes Seychellene, Trachyopsanes and Bisepoxysecocalamenenes” describes the studies directed towards the total synthesis of the sesquiterpenes mentioned in the title. For convenience, the results are presented in three chapters; viz (1) First Enantiospecific Total Synthesis of Seychellene; (2) Enantiospecific First Total Synthesis of Trachyopsanes; and (3) Total Synthesis of Bisepoxysecocalamenenes. In each chapter of the thesis, the compounds are sequentially numbered (bold) and references are marked sequentially as superscripts and listed at the end of the chapter. All the spectra included in the thesis were obtained by xeroxing the original NMR spectra. The tricyclic sesquiterpene (−)-seychellene, containing an interesting tricyclo[5.3.1.03,8]undecane carbon framework, was isolated in 1967 by the research group of Hirose from the leaves of Pogostemon cablin Benth. An enantiospecific total synthesis of seychellene has been described in the first chapter of the thesis. To begin with, (R)-carvone has been transformed into 10-(1-methylethylidene)-3,8-dimethyl-tricyclo[5.3.1.03,8]undecan-2-one employing a tandem intermolecular Michael addition followed by intramolecular Michael addition reaction and intramolecular alkylation reactions. Degradation of the isopropylidene group followed by methylenation transformed 10-(1-methylethylidene)-3,8-dimethyltricyclo[5.3.1.03,8]-undecan-2-one into norseychellene. This methodology has been extended to the first enantioselective total synthesis of (+)-seychellene and (−)-seychellene via (S)-3-methylcarvone and (R)-3-methylcarvone, respectively. The marine sesquiterpene 2-isocyanotrachyopsane was isolated in 1996 by Fusetani and co-workers from the nudibranch Phyllidia varicosa. 2Isocyanotrachyopsane shows potent antifouling activity. During a search for DNA damaging agents, in 1997, Patil and co-workers reported the bioassay guided isolation of two new sesquiterpenes 2-formylaminotrachyopsane and N-phenethyl-N'-2-trachyopsanylurea from a sponge collected in Palau, Axinyssa aplysinoides Dendy 1922. In the second chapter of the thesis enantioselective first total synthesis of 2formylaminotrachyopsane and 2-isocyanotrachyopsane, establishing the absolute configuration of the natural products, has been described. To begin with, (R)-carvone has been transformed into a neopupukeandione employing a tandem double Michael reaction and intramolecular rhodium carbenoid CH insertion reactions. Neopupukea-nan-4-ol was transformed into 2-formylaminotrachyopsane by an acid catalyzed biomimetic rearrangement followed by Ritter reaction. Dehydration of formamide group in 2-formylaminotrachyopsane led to 2-isocyanotrachyopsane. In 1998, the research group of Weyerstahl reported the isolation of two new sesquiterpenes 1,10;7,10-bisepoxy-1,10-seco-calamenene and 6,7;7,10-bisepoxy-6,7-seco-calamenene from the essential oil Hedychium gardnerianum Roscoe. Presence of an interesting benzofused dioxabicyclo[3.2.1]octane framework coupled with the fact that the structures of the natural products were assigned on the basis of the spectral data of a mixture of two compounds prompted us to investigate the total synthesis to confirm their structures. The third chapter of the thesis describes the first total synthesis of these two compounds using an intramolecular ketalisation reaction. p-Cresol was converted into 2-(methoxymethoxy)-5-methylisobutyrophenone, which was further transformed in three steps into 1,10;7,10-bisepoxy-1,10-seco-calame-nene. Catalytic hydrogenation of 1,10;7,10-bisepoxy-1,10-seco-calamenene led to litseachromolaevane A, a new sesquiterpene isolated from an anti-HIV fraction of the leaves and twigs of Litsea verticillata Hance by Fong and co-workers in 2003. For the synthesis of 6,7;7,10-bisepoxy-6,7-seco-calamenene, m-cresol was converted into the 6-(methoxymethoxy)-6-[2-(methoxymethoxy)-4-methylphenyl]-2-methylheptan-3-one, which was transformed into 6,7;7,10-bisepoxy-6,7-seco-calamenene by an intramolecular ketalisation reaction.
32

Structure elucidation and oxidation chemistry of natural products

施麗琼, Sy, Lai-king. January 1998 (has links)
published_or_final_version / Chemistry / Doctoral / Doctor of Philosophy
33

An Evaluation of Hibiscus moscheutos ssp. lasiocarpos and Ipomoea pandurata as host plants of the specialist bee, Ptilothrix bombiformis (Apoidea: Emphorini) and the role of floral scent chemistry in host-selection.

Simpson, Melissa Diane 01 December 2009 (has links)
Ptilothrix bombiformis (Hymenoptera: Apoidea) is a specialist bee belonging to the tribe Emphorini. The emphorine phylogeny suggests that Convolvulacea is the ancestral plant family and independent evolutionary host-switches to several unrelated plant families have occurred. The role of floral scent has been well-characterized in pollination systems involving moths, butterflies, bumblebees, and honeybees, but little is known about how specialist bees mediate host selection, or how host-choice evolved in specialist bees. This research investigates the role of floral scent in host selection by P. bombiformis. Ptilothrix bombiformis has traditionally been classified as a Hibiscus (Malvaceae) oligolege. My research shows that it can now be placed into a more detailed dietary classification as an eclectic oligolege because it also collects pure pollen loads from a distantly-related plant, Ipomoea pandurata (Convolvulaceae). Using dynamic headspace sampling and gas chromatography-mass spectrometry, I obtained floral chemical profiles for Hibiscus moscheutos ssp. lasiocarpos and Ipomoea pandurata. Both flowers contain aliphatics, aromatic compounds, monoterpenes, and sesquiterpenes. The host flowers have 14 shared compounds in their floral scent, which may be responsible for the bees' ability to recognize and utilize I. pandurata, a member or the emphorine ancestral host-plant family. Some of these shared compounds are also found in other emphorine host plants and may be responsible for their constraint in host-use.
34

Estudos visando à síntese de sesquiterpenos bacanos / Studies toward the synthesis of sesquiterpenes bakkanes

Tiago de Oliveira Vieira 30 September 2005 (has links)
Nesta tese, efetuamos estudos visando à síntese de sesquiterpenos bacanos, cuja etapa chave consistiu na construção do sistema cis-hidrindânico, através de reação de contração de anel de cis-octalinas e 2-octalonas mediada por trinitrato de tálio (TTN). Apenas as cis-octalinas como, por exemplo, o cis-4a-metil-l,2,3,4,4a,5,8,8a-octahidronaftaleno e o cis-4a, 7-dimetil-l,2,3,4,4a,5,8,8a-octa-hidronaftaleno, foram passíveis de reação de contração de anel em rendimentos satisfatórios; já a cis-5,10-dimetil-l(9)-octal-2-ona levou ao produto de contração em baixo rendimento. Tentamos utilizar a reação de cis-4a-metil-l,2,3,4,4a,5,8,8a-octa-hidronaftaleno com TTN na síntese da nor-baquenolida-A, porém não conseguimos completar a síntese desta, pois não foi possível efetuar a última etapa sintética, nas várias abordagens testadas. Grandes esforços também foram empregados na preparação diastereosseletiva da cis-5,10-dimetil-l(9)-octal-2-ona através de três abordagens diferentes que foram investigadas, sendo duas delas com êxito. Contudo, o baixo rendimento (38%) da etapa de contração de anel da cis-5,10-dimetil-l(9)-octal-2-ona não permitiu a continuação da rota sintética proposta para a baquenolida-A. Também realizamos a resolução cinética de três diferentes cis-octalóis que foram preparados através da reação de Diels-Alder seguida de redução diastereosseletiva - com a lipase Novozym 435, e os produtos resolvidos foram obtidos em excelentes rendimentos isolados (≥ 40% para cada enantiômero) e excelentes excessos enantioméricos (≥ 98%). / In this thesis, we have developed studies towards the synthesis of sesquiterpenes bakkanes, which key step consisted on the construction of the cis-hydrindanic system through a thallium(III) mediated ring contraction reaction of cis-decalins and 2-octalones. Only the cis-octalins, such as the 1,2,3,4,4a,5,8,8a-octahydro-4a-methylnaphthalene and the 1,2,3,4,4a,5,8,8a-octahydro-4a,7-dimethylnaphthalene, were able to be ring contracted in satisfactory yields; the 4,4a,5,6,7,8-hexahydro-4a,5-dimethylnaphthalen-2(3H)-one, however, furnished the ring contraction product in low yield. We tried to use the reaction of 1,2,3,4,4a,5,8,8a-octahydro-4amethylnaphthalene with TTN in the synthesis of nor-bakkenolide-A, but we could not accomplish the synthesis because it was not possible to make the last step of the sequence, in all tested approaches. Great efforts were made in the diastereoselective preparation of the 4,4a,5,6, 7 ,8-hexahydro-4a,5-dimethylnaphthalen-2(3H)-one, through three different approaches that were investigated, being two of them with profit. However, the low yield (38%) of the ring contraction reaction of 4,4a,5,6, 7,8-hexahydro-4a,5-dimethylnaphthalen-2(3H)-one, precluded the continuation of the synthetic rout proposed to the bakkenolide-A. We have also performed the kinetic resolution of three different cis-octalols that were prepared through Diels-Alder reaction followed by diastereoselective reduction - with the Novozym 435 lipase, and the resolved products were isolated in excellent yields (≥ 40% for each enantiomer) and excellent ee\'s (≥ 98%).
35

Syntheses Of (+)- Allopupukeanones (-)-Valeriananoids And (+)-Herbertanes

Gedu, Satyanarayana 07 1900 (has links) (PDF)
No description available.
36

Enantiospecific Synthesis Of Silphiperfolane, Basmane And Fusicoccanes

Nagaraju, G 05 1900 (has links) (PDF)
Nature’s expertise and virtuosity in creating a phenomenal array of carbocyclic frameworks finds its full expression in the terpenoid group of natural products. The total synthesis of natural products frequently provided the impetus for great advances in organic synthesis. The thesis entitled “Enantiospecific synthesis of silphiperfolane, basmane and fusicoccanes” describes the enantiospecific total synthesis of silphiperfolanes, enantiospecific approach to a bisnorbasmane and an enantiospecific formal total synthesis of ent-fusicoauritone. In the thesis, in each chapter the compounds are sequentially numbered (bold) and references are marked sequentially as superscripts and listed at the end of the chapter. All the spectra included in the thesis were obtained by xeroxing the original NMR spectra. Silphiperfol-6-ene, is the first member of silphiperfolane sesquiterpenes, isolated in 1980 by Bohlmann et al. from Silphium perfoliatum. In 1990, Wright and coworkers reported the isolation of (6S,7R)-silphiperfolan-6-ol (wrongly assigned as (6R,7S)-silphiperfolan-6-ol) from the red algae Laurencia majuscula. Subsequently, in 1997, Wayerstahl and coworkers reported the isolation of all the four possible diastereomers (with respect to C-6 and C-7) of silphiperfolan-6-ols from the essential oil of the rhizomes of Echinops giganteus var lelyi C.D Adams. In the present thesis, enantiospecific synthesis of angular triquinanes has been described in the first chapter. To begin with, (R)-limonene was transformed into the known 6-isopropenyl-1,5-dimethylbicyclo[3.3.0]octan-3-one, which was used as the key intermediate for the construction of the angular triquinane of siliphiperfolanes. An intramolecular rhodium carbenoid insertion into the CH bond of atertiary methyl group at the ring junction of diquinane was employed as the key reaction forthe synthesis of the angular triquinane for the generation of norsilphiperfolane and norcameroonanes. The methodology has been extended to an enantiospecific total synthesis of silphiperfol-6-ene and its C-9 epimer, starting from the diquinane containing a secondary methyl group in addition to two ring junction tertiary methyl groups. In the process, it was also observed a competitive intramolecular insertion of the rhodium carbenoid into the γ- and β-CH bonds leading to the generation of cyclopentanone and cyclobutanones. Subsequently, the sequence has been modified and enantiospecific first total syntheses of(6S,7R)- silphiperfolan-6-ol and (6R,7S)-silphiperfolan-6-ol have been accomplished. In 1983, Wahlberg and coworkers reported the isolation of the diterpenoid 7,8-epoxy-4-basman-6-one, containing an interesting 5-8-5 tricyclic system, from the volatile neutral portion of the diethyl ether extract of sun-cured leaves of greek tobacco (serres). In 1994, Becker et al. reported the isolation of fusicoauritone from the liverwort Anastrophyllum auritum collected in Ecuador. In the second chapter, enantiospecific synthesis of the 5-8-5 ring system of bisnorbasmane and an enantiospecific formal total synthesis of fusicoauritone have been described, starting from the readily available monoterpene (R)-limonene. RCM reaction of a decadiene was employed as the key reaction for the generation of the AB ring system of fusicoccane and basmanes. An intramolecular rhodium carbenoid CH insertion of a diazoketone was utilized for the construction of the C-ring of basmanes. Subsequently, an enantiospecific formal total synthesis of fusicoauritone has been accomplished. Two RCM reactions were employed as the key reactions for the construction of the eight- and five membered rings B and C, respectively, of fusicoccanes.
37

Synthesis Of Sesquiterpenes Containing Two Vicinal Quaternary Carbon Atoms

Rao, M Srinivasa 05 1900 (has links)
Among nature's creation, terpenoids are more versatile and exciting natural products. In a remarkable display of synthetic ingenuity and creativity, nature has endowed terpenes, more so sesquiterpenes, with a bewildering array of carbocyclic frameworks with unusual assemblage of rings and functionality. This phenomenal structural diversity of this class of natural products makes them ideal targets for developing and testing new synthetic strategies for efficient articulation of carbocyclic frameworks. The present thesis entitled "Synthesis of sesquiterpenes containing two vicinal quaternary carbon atoms" describes the synthesis of a number of herbertane sesquiterpenoids, antimicrobial sesquiterpenes enokipodins A and Bf and spirocyclic sesquiterpenes acorone and isoacorones based on ring-closing metathesis reaction. In the thesis, the compounds are sequentially numbered (bold), and references are marked sequentially as superscript and listed at the end of thesis. All the figures included in-the thesis were obtained by DIRECT XEROX OF THE ORIGINAL NMR SPECTRA, and in some of them uninformative areas have been cut to save the space. The herbertane sesquiterpenes are relatively a new class of aromatic sesquiterpenes, containing sterically crowded l-aryl-l,2,2-trimethylcyclopentane carbon framework incorporating two vicinal quaternary carbon atoms on a cyclopentane ring. The sterically crowded molecular framework coupled with the novel biological properties associated with the phenolic herbertanes made the herbertenoids challenging synthetic targets. In the present investigations, to begin with, a formal total synthesis of (±)-herbertenediol and (±)~ mastigophorenes A-D was developed starting from vanillin, based on a combination of Wacker oxidation and intramolecular aldol reactions. A general ring-closing metathesis (RCM) based methodology was developed for a-cuparenone and the herbertane sesquiterpenes herbertene, a-herbertenol, f)~herbertenol and herbertenediol starting from the appropriately substituted acetophenones. The acetophenones on Horner-Wadsworth-Emmons reaction followed by regioselective reduction generated 5-arylbut-2-enols, which on Claisen rearrangement furnished 3~aryl-3-methylpent-4-enals. Grignard reaction with vinylmagnesium bromide followed by RCM reaction and oxidation transformed 3-aryl-3-methylpent~4-enals into 4~aryl-4-methylcylopentenones, which were further transformed into 3-aryl-2,2,3-trimethylcyclopentanones, thus, completing the formal synthesis of the sesquiterpenes (±)-a-cuparenone, (±)-herbertene, (±)-a-herbertenol, (±)-pherbertenol and (±)'herbertenediol. In continuation of the synthesis of herbertane sesquiterpenes, a Claisen rearrangement and RCM reaction based strategy was developed for the synthesis of (±)~lt14-herbertenediol and (±)-71-epi-herbertenolide, and marine sesquiterpenes {£)-tochuinyl acetate and (±)-dihydrotochuinyl acetate. Ortho ester Claisen rearrangement of 3-arylbut-2~ enols generated 3-aryl~3-methylpent-4-enoates, which on allylation and RCM reactions generated 2~methyl-2-arylcyclopent-3-encarboxylates. Stereoselective alkylation followed by functional group manipulations transformed 2-methyl'2-arylcyclopent'3-encarboxylates into the marine sesquiterpenes (±)-tochuinyl acetate and (±)-dihydrotochuinyl acetate, (±)-ll-epiherbertenolide and (±)~l,,14-herbertenediol. Total synthesis of (±)-lt13-herbertenediol has been accomplished employing an RCM reaction as the key step. The requisite starting material 2-methoxy-5-methylphenyl acetate was obtained from p-cresol. Two sequential allylation reactions followed by RCM reaction transformed 2-methoxy-5-methylphenyl acetate into 1 -arylcyclopent-3-en-l-carboxylate. Allylic oxidation and alkylation followed by functional group manipulation transformed I-arylcyclopent-3-en-l-carboxylate into (±)-U3-herbertenediol. For the enantiospecific synthesis of (+)-a-herbertenol, an aromatic Claisen rearrangement based strategy was developed starting from the readily available monoterpene (R)-limonene. To begin with, limonene was converted into 5-isopropenyl-2-methylcyclopent-l-enemethanol which on Mitsunobu reaction with p-cresol followed by Claisen rearrangement of the resultant aryl ether generated a mixture of3-isopropenyl-3a,7,8b-trimethyl-2,3,3a,8b-tetrahydro-1H-cyclopenta[b]benzofurans. Degradation of the isopropenyl group and cleavage of the central ether ring transformed the major cyclopentabenzofuran into 3-aryl-2,3-dimethylcyclopentanone, which was further elaborated into (+)-a-herbertenol. The general RCM reaction methodology developed for the herbertenoids has been further extended to the first total synthesis of the antimicrobial sesquiterpenes (±)~ enokipodins A andB, and a formal total syntheses of (±)-cuparene-l,4-diol, (±)-cuparene-lt4-quinone and (±)~HM-1 methyl ether star*w« from 2,5~dimethoxy~4-methylacetophenone. It has been further extended to the formal synthesis of spirocydic sesquiterpenes (±)-acorone and (±)-isoacorones starting from cyclohexane-1,4-dione.
38

Asymmetric organocatalysis in the Michael reaction of cyclic α-alkyl ketones : enantioselective synthesis of suberosanes and succinimides / Organocatalyse asymétrique dans la réaction Michael des cétones α-alkylées cycliques : synthèse enantioselective de subérosanes et de succinimides

Wei, Lai 25 September 2018 (has links)
La découverte des activités cytotoxiques impressionnantes des subérosanes, des sesquiterpènes d’origine marine isolées dès 1996 de la gorgone Subergorgia suberosa, ainsi que leurs structures tricycliques complexes possédant jusqu’à cinq centre stéréogènes contigus dont un centre quaternaire central, ont fait de ces molécules des cibles de choix tant pour les acteurs de la chimie médicinale que pour ceux travaillant dans le domaine de la synthèse totale. Enfin, une molécule d’origine synthétique « simplifiée » de cette famille, la nor-subérosénone, a également montré des activités cytotoxiques remarquables. Les quantités disponibles de ces produits d’intérêt pharmacologique étant infimes dans le milieu marin, notre équipe s’est intéressée précédemment à la synthèse et à l’évaluation biologique de plusieurs représentants de cette famille de produits naturels et de leurs antipodes permettant de décrire leurs configurations absolues ainsi qu’aux nor-subérosénone et nor-subérosanone d’origine synthétique. L’étape clef de ces synthèses faisant appel à une réaction de Michael asymétrique utilisant un inducteur chiral stœchiométrique peu onéreux et disponible sous ses deux formes antipodales a permis d’obtenir pour la première fois, en version énantiosélective, plusieurs représentants de cette famille de façon concise. Nous décrivons dans ce manuscrit comment nous sommes passés d’une telle réaction de Michael « stœchiométrique » à un processus organocatalysé asymétrique impliquant un système catalytique qui après développement s’est montré efficace et peu coûteux permettant de réduire encore le nombre d’étapes de ces synthèses et d'accroitre l'économie d'atomes, vers une chimie plus respectueuse de l’environnement. Les améliorations apportées aux synthèses précédemment réalisées au sein de notre équipe, et notamment à une cyclisation originale catalysée au triflate d’argent, ont permis de réaliser les synthèses par la voie « stœchiométrique » de nor-subérosanes avec une grande efficacité. La (+)-nor-subérosénone a été obtenue en vingt étapes et 19.29% de rendement global (vs dix-neuf étapes et 4.65% de rendement global précédemment) et la (±)-nor-subérosanone en dix-neuf étapes et 25.06% de rendement global (vs dix-huit étapes et 8.85% de rendement global précédemment). Le succès de la voie organocatalysée a enfin permis de synthétiser la (+)-nor-subérosénone en dix-huit étapes et 19.76% de rendement global (vs dix-neuf étapes et 4.65% de rendement global). Nous avons enfin ouvert la voie à la synthèse potentielle d’épimères des subérosanes via une mise au point de l’addition organocatalysée de Michael de cétone cycliques alpha-méthylées sur les maleimides. Divers maléimides se sont avérés être des électrophiles appropriés dans ce processus, délivrant principalement les adduits attendus portant la stéréodiade centre quaternaire-centre tertiaire adjacents avec des rendements modérés à excellents (39 à 94%) et des énantiosélectivités bonnes à excellentes (75 à 99% ee) dans des conditions réactionnelles faisant intervenir l’activation par les micro-ondes. Des conditions réactionnelles ont été optimisées pour réduire au maximum les diastéréomères et les régioisomères correspondants ainsi que les produits secondaires d’aza-Michael. Ce travail s’inscrit dans le domaine plus vaste et très compétitif de la formation organocatalysée énantiosélective, en une seule étape, d’enchaînement de centre stéréogènes carbonés quaternaire et tertiaire. / The discovery of the impressive cytotoxic activities of the subterranean, sesquiterpenes of marine origin isolated in 1996 from the gorgon Subergorgia suberosa, as well as their complex tricyclic structures with up to five contiguous stereogenic centers including a central quaternary center, made these molecules choice targets for both those involved in medicinal chemistry and those working in the field of total synthesis. Finally, a molecule of "simplified" synthetic origin of this family, nor-suzerenone, has also shown remarkable cytotoxic activities. As the quantities available for these products of pharmacological interest are minimal in the marine environment, our team was interested previously in the synthesis and the biological evaluation of several representatives of this family of natural products and their antipodes allowing to describe their absolute configurations as well as nor-suzerenone and nor-suerosanone of synthetic origin. The key step in these syntheses, using an asymmetric Michael reaction using a low-cost stoichiometric chiral inducer available in its two antipodal forms, made it possible to obtain for the first time, in enantioselective version, several representatives of this family in a way that concisely. We describe in this manuscript how we went from such a "stoichiometric" Michael reaction to an asymmetric organocatalytic process involving a catalytic system that after development proved effective and inexpensive enough to further reduce the number of stages of these syntheses and to increase the economy of atoms, towards a chemistry more respectful of the environment. The improvements made to syntheses previously carried out within our team, and in particular to an original cyclization catalyzed with silver triflate, made it possible to synthesize by the "stoichiometric" way of nor-subterraneans with a great efficiency. (+) - nor-suzerenone was obtained in twenty steps and 19.29% overall yield (vs nineteen stages and 4.65% overall yield previously) and the (±) -nor-suerosanone in nineteen stages and 25.06 % overall return (vs eighteen steps and 8.85% overall return previously). The success of the organocatalyzed route eventually allowed to synthesize (+)-nor-suberosenone in eighteen stages and 19.76% overall yield (vs nineteen stages and 4.65% overall yield). Finally, we have opened the way for the potential synthesis of epimers of suberosanes via a development of organocatalyzed Michael addition reaction of alpha-methylated cyclic ketones to maleimides. Various maleimides have been shown to be suitable electrophiles in this process, mainly delivering the expected adducts carrying the adjacent tertiary center-tertiary center stereodiade in moderate to excellent yields (39 to 94%) and good to excellent enantioselectivities (75 to 99% ee) under reaction conditions involving activation by microwaves. Reaction conditions were optimized to minimize corresponding diastereomers and regioisomers as well as aza-Michael by-products. This work is part of the larger and highly competitive field of one-step enantioselective organocatalyst formation of quaternary and tertiary carbon-based stereogenic centers.
39

Ireland-Claisen Rearrangement Based Strategy To Sesquiterpenes Containing Vicinal Quaternary Carbon Atoms

Vasanthalakshmi, B 03 1900 (has links)
Among Nature's creation, terpenoids are more versatile and exciting natural products. In a remarkable display of synthetic ingenuity and creativity, nature has endowed terpenes with a bewildering array of carbocyclic frameworks with unusual assemblage of rings and functionalities. This phenomenal structural diversity of terpenes makes them ideal targets for developing and testing new synthetic strategies for efficient articulation of carbocyclic frameworks. The thesis entitled “Ireland-Claisen Rearrangement Based Strategy to Sesquiterpenes Containing Vicinal Quaternary Carbon Atoms” demonstrates the utility of the Ireland ester Claisen rearrangement and RCM reactions for the synthesis of a variety of sesquiterpenes containing vicinal quaternary carbon atoms. The results are described in five different sections, viz., (a) Synthesis of herbertene-1,13-diol and α-herbertenol; (b) Total syntheses of herbertenolide, herberteneacetal, herbertene-1,14-diol and herbertene-1,15-diol; (c) First total synthesis of the spirobenzofuran isolated from Acremonium sp. HKI 0230; (d) Total synthesis of lagopodin A; and (e) Synthesis of Laurencenone C, α- and β-chamigrenes. Complete details of the experimental procedures and the spectroscopic data were provided in a different section. A brief introduction is provided wherever appropriate to keep the present work in proper perspective. The compounds are sequentially numbered (bold), references are marked sequentially as superscripts and listed in the last section of the thesis. All the spectra included in the thesis were obtained by xeroxing the original NMR spectra. To begin with a short and efficient synthesis of herbertene-1,13-diol and α-herbertenol has been achieved starting from 2-allyl-4-methylanisole. Ireland ester Claisen rearrangement of the dimethylallyl 2-arylpent-4-enoate, obtained from p-cresol in seven steps, followed by RCM reaction of the resultant diene generated 1-aryl-1,2,2-trimethylcyclopent-3-enecarbo-xylate, which on functional group transformations provided (±)-herbertene-1,13-diol and (±)-α-herbertenol. Ireland ester Claisen rearrangement of E-3-(2-methoxy-5-methylphenyl)but-2-en-1-yl 2-methylpent-4-enoate furnished a stereoisomeric mixture of the dieneesters, which on RCM reaction generated an epimeric mixture of 2-aryl-1,2-dimethylcyclopent-3-enecarboxylates. These esters were further elaborated into (±)-herbertene-1,14-diol, (±)-herbertene-1,15-diol and (±)-herberteneacetal via epi-herbertenolide and (±)-herbertenolide. First total synthesis of a spirobenzofuran isolated from Acremonium sp. HKI 0230 has been accomplished starting from 2,5-dimethoxy-4-methylphenylacetate, confirming the structure of the natural product. Ireland ester Claisen rearrangement of dimethylallyl 2-(2,5-dimethoxy-4-methylphenyl)pent-4-enoate followed by RCM reaction and demethylation furnished a lactone, cyclopentaspirobenzofuranone, which on further functional group transformations completed the first total synthesis of the spirobenzofuran. 1-(2,5-Dimethoxy-4-methylphenyl)-1,2-dimethylcyclopent-3-enecarboxylate, an intermediate in the synthesis of spirobenzofuran, has been further elaborated into 1-aryl-1,2,2-trimethylcyclopent-3-ene, which on functional group transformations transformed into (±)lagopodin A and (±)-enokipodins A and B. Efficient total syntheses of laurencenone C, α-chamigrene and β-chamigrenes have been accomplished employing an Ireland ester Claisen rearrangement and RCM reaction as key steps starting from the Diels-Alder adduct of isoprene and acrylic acid. Ireland ester Claisen rearrangement of dimethylallyl cyclohex-3-enecarboxylate generated methyl 1-(1',1'-dimethylallyl)cyclohex-3-enecarboxylate, which was further elaborated into 5,5,9-trimethyl-spiro[5.5]undeca-3,8-dien-1-ol employing an RCM reaction as the key step. The spirodienol on further functional group transformations generated (±)-laurencenone C, (±)-α-chamigrene and (±)-β-chamigrene.
40

Transformações microbianas da lactona sesquiterpênica tagitinina C / Microbial transformation of sesquiterpene lactone tagitinin C

Rocha, Bruno Alves 22 June 2009 (has links)
A busca por moléculas de origem natural que ocupem um espaço químico diferente daquelas já existentes tornou-se uma necessidade para atender às novas demandas das indústrias farmacêuticas. A pesquisa envolvendo transformações microbianas de metabólitos secundários de origem vegetal pode ser utilizada como uma nova ferramenta na biosíntese destas novas substâncias, favorecendo a criação de bibliotecas ricas em estruturas com o emprego em diversos alvos biológicos. A tagitinina C é uma lactona sesquiterpênica isolada da Tithonia diversifolia (Asteraceae). Essa substância possui diversas atividades biológicas descritas na literatura. Contudo, há certa ressalva no uso de lactonas sesquiterpênicas para fins terapêuticos devido à elevada toxicidade apresentada por essas substâncias. A biotransformação de substâncias naturais de elevado interesse farmacológico pode ser utilizada com o intuito de diminuir seus efeitos tóxicos ou ampliar sua capacidade terapêutica. Assim, esse trabalho teve como objetivo a utilização de fungos para a biotranformação da tagitinina C. Os resultados obtidos mostraram que os fungos de solo Aspergillus terreus e Mucor rouxii possuem a capacidade de biotransformar tagitinina C. O fungo Aspergillus terreus levou a formação de um produto biotransformado através de uma reação não usual de epoxidação entres os C4-C5 e ainda metoxilação do C1, formando então 1-metóxi-3-hidróxi-3,10-4,5-diepóxi-8-isobutiroilóxi-germacra-11(13)-en-6,12-olido. Os resultados obtidos nesse trabalho demostram que é possível a utilização de fungos na biotransformação da tagitinina C, levando a alterações na molécula que podem influenciar no seu potencial tóxico ou terapêutico. / The search for molecules of natural origin that place a chemical space which is different from the already existing has become that a need in process of discovery new chemical entities with pharmacological interest that support the demand of the pharmaceutical industries. Research involving microbial transformations the secondary metabolites from plants can be used as an alternative for the biosynthesis of such new compounds, thus facilitating the creation of libraries which are rich in structures to be screened against diverse biological targets. Tagitin C is a sesquiterpene lactone isolated from Tithonia diversifolia (Asteraceae) that displays several biological activities already described in the literature. Howeever, due to several reports describing toxic effects of sesquiterpenes lactones, there is a concern in its oral use. Thus, the biotransformation of pharmacologically interesting substances can be carried out with the aim to decrease their toxic effects or amplify their therapeutic properties. Therefore, this work aimed at using of fungi to perform biotransformations of tagitin C. The results showed that the soil fungi Aspergillus terreus and Mucor rouxii have the ability to carry out biological transformations of tagitinin C. The fungus A. terreus led to the formation of a different product through an unusual reaction of epoxidation between C4-C5 and metoxilation of C1 of tagitinin C, the derivative 1-methoxy-3-hydroxy-3,10-4,5-diepoxy-8-isobutiroyloxygermacr- 11 (13)-en-6 ,12-olide. The results of this work show that it is possible to use soil fungi in the biotransformation of tagitinin C, leading to changes in the chemical structure that may influence its toxic or therapeutic potential.

Page generated in 0.0602 seconds