• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Skeletal muscle aging: stem cell function and tissue homeostasis

Victor, Pedro Sousa 27 February 2012 (has links)
Muscle aging, in particular, is characterized by the reduction of tissue mass and function, which are particularly prominent in geriatric individuals undergoing sarcopenia. The age-associated muscle wasting is also associated with a decline in regenerative ability and a reduction in resident muscle stem cell (satellite cell) number and function. Although sarcopenia is one of the major contributors to the general loss of physiological function, the mechanisms involved in age-related loss of muscle homeostasis and satellite cell activity are yet poorly understood. Using a microarray-based transcriptome analysis of muscle stem cells isolated from young and physiologically aged/geriatric mice, we uncovered specific changes in the gene expression profile that highlighted key biological processes and potential molecular markers associated with satellite cell aging, which included p16INK4a. We used Bmi1-deficient mice to further explore the implications of p16INK4a up-regulation in satellite cell function. We found premature p16INK4a up-regulation in young/adult Bmi1-deficient satellite cells correlating with defects in satellite cell number, proliferation and self-renewal capacity. In addition we have identified a number of overlapping biological processes dysregulated in physiologically aged and Bmi1-deficient satellite cells, suggesting that Bmi1-dependent epigenetic regulation may underlie many of the intrinsic changes taking place in chronologically aged satellite cells. In addition, we show that Bmi1 loss causes defects of late postnatal/adult muscle growth characterized by reduced muscle mass with smaller muscle fibers, typical of atrophying senescent/sarcopenic muscle. Since p16INK4a expression is specifically up-regulated in muscle satellite cells of geriatric, sarcopenic mice and in a mouse model of accelerated senescence/sarcopenia (SAMP8), we propose that the Bmi1/p16INK4a axis might be particularly operative in muscle stem cells from the elderly. Muscle wasting is one of the physiological consequences of sarcopenia and the identification of novel factors regulating muscle growth and atrophy is of potential relevance for therapeutical applications. We have uncovered a new role for Sestrins as skeletal muscle growth promoting factors in the adult. We found Sestrins expression regulated in mouse models of skeletal muscle atrophy and hypertrophy and in human myopathies. Through a gain of function approach we show that Sestrins induce skeletal muscle growth, by activating the IGF1/PI3K/AKT pathway. / El envejecimiento del tejido muscular está caracterizado concretamente por una reducción global de la masa muscular y un empeoramiento de la función de tejido, particularmente prominentes en individuos muy viejos (geriátricos) que padecen sarcopenia. La pérdida muscular asociado a la edad, se acompaña de una reducción en la capacidad de regeneración del músculo y en una reducción del número y la función de las células madre residentes en el músculo (células satélite). Aunque la sarcopenia sea una de las causas principales de la pérdida general de función fisiológica del músculo, los mecanismos implicados en la reducción de la homeostasis muscular y de actividad de las células satélite no han sido completamente caracterizados. Mediante el análisis comparativo del transcriptoma de células madre musculares aisladas de ratones jóvenes y de ratones viejos (geriátricos), hemos encontrado cambios específicos en su perfil de expresión génica que apuntan a los procesos biológicos dominantes y a los marcadores moleculares potencialmente asociados con el envejecimiento de las células satélite, entre los que destaca p16INK4a. Por ello, hemos utilizado ratones deficientes en Bmi1 para explorar más profundamente las implicaciones de la sobreexpresión de p16INK4a en la función de las células satélite. Hemos encontrado que células satélite jóvenes del ratón Bmi1-/- presentan sobrexpresión de p16INK4a, que correlacionan con una reducción en el número de la células, y en su capacidad de proliferación y autorenovación. Además hemos identificado un grupo de procesos biológicos comunes entre las células satélite viejas y las deficientes en Bmi1, sugiriendo que la regulación epigenética mediada por Bmi1 puede ser la base de muchos de los cambios intrínsecos que ocurren en células envejecidas fisiológicamente. Además, demostramos que la pérdida Bmi1 causa defectos en el crecimiento postnatal/adulto del músculo, caracterizado por pérdida de masa muscular con fibras más pequeñas, típico del músculo atrofiado senescente o sarcopénico. Puesto que la expresión de p16 está aumentada específicamente en el músculo de ratones viejos, sarcopénicos y en un modelo del ratón con envejecimiento (senescencia) acelerado (SAMP8), proponemos que el eje Bmi1/p16 puede actuar particularmente en las células madre musculares de los ancianos. La pérdida de masa muscular es una de las consecuencias fisiológicas de la sarcopenia y la identificación de nuevos factores que regulen el crecimiento y atrofia del músculo es de gran importancia para aplicaciones terapéuticas. Hemos descubierto un nuevo papel de las Sestrinas como factores promotores del crecimiento del músculo esquelético en el adulto. Hemos encontrado que la expresión de las Sestrinas se regula en modelos del ratón de atrofia y de hipertrofia muscular y en miopatías humanas. Mediante experimentos de ganacia de función hemos demostrado que las Sestrinas inducen el crecimiento del músculo esquelético, activando el ruta de señalización de IGF1/PI3K/AKT

Page generated in 0.0591 seconds