• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 21
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 32
  • 32
  • 32
  • 8
  • 8
  • 7
  • 7
  • 7
  • 6
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Evaluation of losses from anaerobic biosolids due to winter and late fall land application /

El-Naggar, Khaled, January 1900 (has links)
Thesis (M. App. Sc.)--Carleton University, 2004. / Includes bibliographical references (p. 148-158). Also available in electronic format on the Internet.
22

Denitrification in low pressure distribution onsite wastewater disposal systems

Degen, Marcia J. 14 October 2005 (has links)
The effects of effluent type, effluent loading rate, dosing interval, and temperature on denitrification in low pressure distribution, on-site wastewater treatment and disposal systems (OSWTDS) were evaluated in this study. The treatments were surface and subsurface soil horizons; nitrified and non-nitrified wastewaters; 0.5, 1.0, and 1.5 times the Virginia Department of Health (VDH 1989) recommended wastewater loading rate; 24 and 48 hour dosing intervals; and summer and winter temperatures. Surface and subsurface soil cores were collected from a Groseclose silt loam soil (clayey, mixed, mesic Typic Hapludult) and subjected to the various treatments. The effects of the treatments on denitrification were evaluated based on analyses of leachate from the cores, soil chemical analyses, and microcosm studies to estimate actual denitrification activity. A model was developed from the study that estimated the mean N₂O production for each combination of experimental treatments. The results of the study and the model indicate that denitrification can be enhanced in OSWTDS by the application of non-nitrified wastewater at one-half the VDH recommended loading rate, or 1.25 cm/day, for surface soil horizons (30 min inch⁻¹ percolation rate) using a 48 hour dosing interval. A field study was conducted on a Lowell silt loam soil (fine, mixed, mesic Typic Hapludalf). Denitrification was measured at this site using acetylene blocking and the results compared to those predicted by the denitrification model developed from the laboratory data. The field measurements of denitrification based on N₂O concentration in the soil atmosphere were three orders of magnitude higher than that predicted by the model. It was concluded that the laboratory techniques can be used to determine optimum method of operation for denitrification in a low pressure distribution system, but it cannot be used to determine the field design loading rates. / Ph. D.
23

Availability and distribution of heavy metals from sewage sludge in the plant-soil continuum

Rappaport, Bruce D. January 1986 (has links)
An investigation was conducted using in situ lysimeters (1.5 m x 2.3 m) to determine Cd, Cu, Ni, and Zn availabilities for barley (Hordeum vulgare L.) and corn (Zea mays L.) grown on four sludge-amended soils. These lysimeters were constructed in Acredale silt loam (Typic Ochraqualf), Bojac loamy sand (Typic Hapludult), Davidson clay loam (Rhodie Paleudult), and Groseclose silt loam (Typic Hapludult) soils. An aerobically digested sewage sludge from a sewage system with major industrial inputs was applied at rates of 0, 42, and 84 dry Mg ha-t to the lysimeters in the poorly-drained Acredale soil. Rates of 0, 42, 84, 126, 168, and 210 dry Mg ha-1 were applied to the lysimeters in the well-drained Bojac, Davidson, and Groseclose soils. Tissue metal concentrations were determined in 1984 and 1985 for a three crop rotation, which consisted of corn, barley, and corn on the Acredale soil. Increases in sludge-borne Ni and Zn led to increases in Ni and Zn concentrations in corn earleaf, corn grain, and barley silage. Copper concentration was increased in barley silage but not in corn grain and stover. On this poorly-drained soil, metal movement did not occur below the Ap horizon even when Cu was applied in excess of USEPA guidelines. Although there were increases in metal levels, all four metals were within the range considered normal for corn and barley growth. Soil, corn, and barley plants were sampled in 1984 and 1985 to determine Cd, Cr, Cu, Ni, and Zn availabilities for crops grown on the sludge-amended Bojac, Davidson, and Groseclose soils. Levels of DTPA-extractable Cd, Cu, Ni, and Zn in the Ap horizon of these soils increased linearly with sludge rate. Corn grain and stover yields were not decreased on the Bojac, Davidson, and Groseclose soils when 4.5, 5105, 760, 43.0, 135, and 620 kg ha-1 of Cd, Cr, Cu, Ni, Pb, and Zn were added as a sludge-amendment. Copper and Zn applied in excess of 480 and 60 kg ha- 1 of USEPA guidelines, respectively on the Bojac, Davidson, and Groseclose soils were not phytotoxic to corn plants in 1984. Corn and barley tissue sampled for three consecutive seasons had Cr concentrations <2.8 mg kg-1. / Ph. D.
24

Wastewater application to soils: hydraulic and nitrogen considerations

Simon, John J. January 1986 (has links)
Land application of domestic and industrial wastewaters provides an effective means of recycling water and its components into the ecosystem. Successful treatment by soil requires that wastewater is applied in quantities that both maintain infiltrative capacity of the soil and do not exceed the capacity of the soil-plant system to assimilate biological and chemical contaminants. Application of N-rich wastewaters requires that consideration be given to both the ability of the soil to transmit the hydraulic load and remove sufficient N to maintain groundwater quality standards. A textile wastewater containing high concentrations of organic N was spray-irrigated to tall fescue (Festuca arunindinacea) to determine optimum N application levels. Nitrogen balances were determined at each N level and and the potential for predicting the leaching component of the excess N applied was investigated. Historically on-site wastewater disposal systems (OSWDS) for treating septic tank effluent (STE) have been designed on a hydraulic loading basis with N pollution potential essentially ignored. Many soils have been deemed unsuitable for application of STE because of textural, water table, or landscape restrictions. The relations between soil properties, hydraulic performance of OSWDS, and N distribution around OSWDS are evaluated. Wastewater from a nylon processing plant was applied to 'Ky 31' tall fescue at total Kjeldahl nitrogen (TKN) levels of approximately 250, 430, and 1900 kg ha⁻¹ during 1982 and 1983. Fescue yield and N removal was comparable to agricultural yields at similar N application levels. Nitrogen balances indicate that plant uptake efficiency decreased with increasing organic N levels above the 250 kg ha⁻¹ level and that maximum uptake occurred at the 450 kg ha⁻¹ level. Most of the N not recovered in plant tissue mineralized rapidly to the nitrate NO₃⁻ form and leaching was noted during the winter and spring. This data is evaluated with quasi-transient analytical solution of the convection-dispersion equation. The movement of the solute center of mass is predicted on the basis of assumptions of piston flow as well as alternative assumptions of mixing via plate layer theory. Prediction of the location of the center of solute mass (α) provides a moving lagrangian coordinate solution around which dispersion of solute is calculated. The assumptions made about the sequence of evaporation and infiltration events significantly influence the prediction of α and hence the agreement between predicted and measured solute distribution. Both approaches give results which are within experimental error and provide a rational basis for predicting leaching losses and carry-over NO₃⁻ available to future crops. Prototype OSWDS with low pressure distribution installed in three clayey limestone-derived soils were dosed with STE at flux densities ranging from 0.4 to 3.6 cm d⁻¹ on a trench bottom area basis. Ponding was noted in OSWDS at all sites dosed at the 3.6 cm d⁻¹ flux due to both underlying hydraulic restrictions and resultant anaerobic conditions. It is concluded that clayey B horizons low in swelling clays but moderately well structured can be dosed at flux densities up to 2 cm d⁻¹ if low pressure distribution of STE is used. Nitrification was found to be quite limited in soils where effluent was ponded above a restrictive layer but occurred readily within 30 cm below trenches which were freely drained or had matric potentials of at least 40 cm of water. Ratios of NO₃⁻ to Cl⁻ indicate that only limited denitrification can be expected and that substantial NO₃⁻ does leach from below OSWDS in the direction of water flow. / Ph. D.
25

The characterisation of some South African water treatment residues and glasshouse pot experiments to investigate the potential of two residues for land disposal.

Titshall, Louis William. January 2003 (has links)
Water treatment residues (WTRs) are the by-product from the production of potable water. They consist mainly of the precipitated hydrous oxides of the treatment chemicals, and materials removed from the raw water. This study investigated the range of treatment processes and residues produced in South Africa, and two WTRs were selected for testing on selected soils and mine materials. A questionnaire was developed and sent to water treatment authorities across South Africa. Information on the treatment chemicals, dosages, volumes and current disposal practices, and a sample of WTR from each treatment plant were requested. Eleven, of 21 authorities, returned completed questionnaires, representing 37 water treatment facilities. Organic polymers were the most commonly used treatment chemical, with most plants also using lime. Other less frequently used chemicals and additives were Alz(S04)3.14I-hO, Fe2(S04)3, FeC!), sodium aluminate, activated silica, activated charcoal, CO2 and bentonite. Information given regarding residue thickening and disposal was poor. Samples from Rand Water, Umgeni Water (Midmar), Midvaal Water Company, Amatola Water and Cape Metropolitan Council (Faure) were received or collected. An additional sample from Faure was also received, representing a change in the treatment process. These samples were analysed for a range of chemical and physical characteristics. These analyses showed that the WTRs had the potential to supply some plant nutrients (Ca, Mg, Fe, S) but that metal toxicity may be a problem, in particular Mn in the Faure WTR, and that P adsorption may be severe. The samples selected to test the potential for land disposal were from Rand Water and Faure. A pot experiment tested the growth of Eragrostis tefJ, Cenchrus ciliaris and Digitaria eriantha in mixtures of Rand WTR and material from a coal mine i.e., a sandy soil material, spoil material and coal combustion ash, at rates of 0, 50, 100, 200 and 400 g kg" with a uniform fertiliser treatment applied to all mixtures. The grass was harvested on three occasions and the mean total yield (dry mass) determined, as well as nutrient uptake. The pots were leached after each harvest and the pH and electrical conductivity determined. The soil, spoil and ash were characterised and pH, EC and water retention characteristics of the mixtures determined. Growth of the grasses in the ash treatments was poor and these were terminated. Eragrostis tefJ grown in the soil showed a decrease in mean total yield with increasing WTR application rate, but yield was good up to the 200 g kg" treatment at the first harvest, declining substantially by the second harvest. In general C. ciliaris and D. eriantha grown in the soil showed a decrease in mean total yield for all harvests with increasing WTR application. The yield of E. /ejJ, grown in the spoil, increased up to 100 g kg,l WTR addition, but decreased thereafter. Digitaria eriantha showed a decrease in yield, and C. ciliaris an increase, with increasing WTR application rate , but for all treatments the differences were non-significant. The pH and EC of the leachates generally increased with increasing WTR addition. The concentration of nutrients in the grasses did not indicate any deficiencies or toxicities. As the growth of grass was poor in the ash treatments, another pot experiment was established to test the growth of two creeping grass species grown in the Rand WTR as a cover over the ash material. Cynodon dactylon and Stenotaphrum secundatum were grown in 20, 40 and 60 mm layers of Rand WTR, with and without a fertiliser treatment. Both species performed best in the 60 mm layer with fertiliser, and C. dactylon performed better than S. secundatum. The former species was more tolerant of the high pH, but both have potential as cover vegetation on the ash dumps when these are covered with Rand WTR. A further glasshouse study investigated the effect of Faure WTR mixed with a nutrient poor sandy soil on the nutrient uptake and seed yield of common dry beans (Phaseolus vulgaris). The WTR was added to the soil at 0, 50, 100, 200 and 400 g kg" each with five levels of fertiliser (0, 25, 50, 100 (recommended optimum) and 150 %). Bean pods were harvested once the plants had senesced. The number of pods and mass and number of seeds per treatment were determined. The seeds were analysed for nutrient uptake. Interveinal chlorosis and necrotic lesions were evident on cotylendonous and new leaves in the WTR treated soils, the severity of the symptoms increasing with increasing rate of WTR. Additional pots were established at the 400 g kg" rate (without fertiliser) and leaf material collected for chemical analysis. This showed that Mn toxicity was the cause, with leaf concentrations about 12 times the recommended 100 mg kg" upper limit. However, mass of bean seed was highest in the 400 g kg" Faure WTR treatment with 150 % fertiliser. Nutrient translocation to the seed seemed to be relatively consistent regardless of treatment, with little accumulation ofMn. The data collected illustrated the range of conditions and types of WTRs produced in South Africa, and that in some instances these residues have favourable characteristics for land application. The use of the Rand WTR showed that it could be applied to the spoil medium at relatively high concentrations without severely negatively impacting on grass growth, but more caution should be used when applying this material to the soil medium. While the grass did not grow in the ash treatments, it would seem that with suitable species the Rand WTR could be beneficially applied to ash material as a cover layer. The use of the Faure WTR on a sandy soil seemed to potentially improve the yield of the indicator crop, but caution should be exercised due to the possibility of Mn toxicity. The use of additional fertiliser would seem to be essential. Further research would require that field scale investigation of both WTRs be conducted, as well as further studies of applicat ion rates and techniques in laboratory and glasshouse investigations. / Thesis (M.Sc.)-University of Natal, Pietermaritzburg, 2003.
26

The characterisation of some South African water treatment residues and glasshouse pot experiments to investigate the potential of two residues for land disposal.

Titshall, Louis William. January 2003 (has links)
Water treatment residues (WTRs) are the by-product from the production of potable water. They consist mainly of the precipitated hydrous oxides of the treatment chemicals, and materials removed from the raw water. This study investigated the range of treatment processes and residues produced in South Africa, and two WTRs were selected for testing on selected soils and mine materials. A questionnaire was developed and sent to water treatment authorities across South Africa. Information on the treatment chemicals, dosages, volumes and current disposal practices, and a sample of WTR from each treatment plant were requested. Eleven, of 21 authorities, returned completed questionnaires, representing 37 water treatment facilities. Organic polymers were the most commonly used treatment chemical, with most plants also using lime. Other less frequently used chemicals and additives were A12(SO4)3.14H2O, Fe2(SO4)3, FeC1), sodium aluminate, activated silica, activated charcoal, CO2 and bentonite. Information given regarding residue thickening and disposal was poor. Samples from Rand Water, Umgeni Water (Midmar), Midvaal Water Company, Amatola Water and Cape Metropolitan Council (Faure) were received or collected. An additional sample from Faure was also received, representing a change in the treatment process. These samples were analysed for a range of chemical and physical characteristics. These analyses showed that the WTRs had the potential to supply some plant nutrients (Ca, Mg, Fe, S) but that metal toxicity may be a problem, in particular Mn in the Faure WTR, and that P adsorption may be severe. The samples selected to test the potential for land disposal were from Rand Water and Faure. A pot experiment tested the growth of Eragrostis teff, Cenchrus ciliaris and Digitaria eriantha in mixtures of Rand WTR and material from a coal mine i.e., a sandy soil material, spoil material and coal combustion ash, at rates of 0, 50, 100, 200 and 400 g kg-1 with a uniform fertiliser treatment applied to all mixtures. The grass was harvested on three occasions and the mean total yield (dry mass) determined, as well as nutrient uptake. The pots were leached after each harvest and the pH and electrical conductivity determined. The soil, spoil and ash were characterised and pH, EC and water retention characteristics of the mixtures determined. Growth of the grasses in the ash treatments was poor and these were terminated. Eragrostis teff grown in the soil showed a decrease in mean total yield with increasing WTR application rate, but yield was good up to the 200 g kg-1 treatment at the first harvest, declining substantially by the second harvest. In general C. ciliaris and D. eriantha grown in the soil showed a decrease in mean total yield for all harvests with increasing WTR application. The yield of E. teff, grown in the spoil, increased up to 100 g kg-1 WTR addition, but decreased thereafter. Digitaria eriantha showed a decrease in yield, and C.ciliaris an increase, with increasing WTR application rate, but for all treatments the differences were non-significant. The pH and EC of the leachates generally increased with increasing WTR addition. The concentration of nutrients in the grasses did not indicate any deficiencies or toxicities. As the growth of grass was poor in the ash treatments, another pot experiment was established to test the growth of two creeping grass species grown in the Rand WTR as a cover over the ash material. Cynodon dactylon and Stenotaphrum secundatum were grown in 20, 40 and 60 mm layers of Rand WTR, with and without a fertiliser treatment. Both species performed best in the 60 mm layer with fertiliser, and C. dactylon performed better than S. secundatum. The former species was more tolerant of the high pH, but both have potential as cover vegetation on the ash dumps when these are covered with Rand WTR. A further glasshouse study investigated the effect of Faure WTR mixed with a nutrient poor sandy soil on the nutrient uptake and seed yield of common dry beans (Phaseolus vulgaris). The WTR was added to the soil at 0, 50, 100, 200 and 400 g kg-1 each with five levels of fertiliser (0, 25, 50, 100 (recommended optimum) and 150 %). Bean pods were harvested once the plants had senesced. The number of pods and mass and number of seeds per treatment were determined. The seeds were analysed for nutrient uptake. Interveinal chlorosis and necrotic lesions were evident on cotylendonous and new leaves in the WTR treated soils, the severity of the symptoms increasing with increasing rate of WTR. Additional pots were established at the 400 g kg-1 rate (without fertiliser) and leaf material collected for chemical analysis. This showed that Mn toxicity was the cause, with leaf concentrations about 12 times the recommended 100 mg kg-1 upper limit. However, mass of bean seed was highest in the 400 g kg-1 Faure WTR treatment with 150 % fertiliser. Nutrient translocation to the seed seemed to be relatively consistent regardless of treatment, with little accumulation of Mn. The data collected illustrated the range of conditions and types of WTRs produced in South Africa, and that in some instances these residues have favourable characteristics for land application. The use of the Rand WTR showed that it could be applied to the spoil medium at relatively high concentrations without severely negatively impacting on grass growth, but that more caution should be used when applying this material to the soil medium. While the grass did not grow in the ash treatments, it would seem that with suitable species the Rand WTR could be beneficially applied to ash material as a cover layer. The use of the Faure WTR on a sandy soil seemed to potentially improve the yield of the indicator crop, but caution should be exercised due to the possibility of Mn toxicity. The use of additional fertiliser would seem to be essential. Further research would require that field scale investigation of both WTRs be conducted, as well as further studies of application rates and techniques in laboratory and glasshouse investigations. / Thesis (M.Sc.)-University of Natal, Pietermaritzburg, 2003.
27

Carbon and nitrogen dynamics on a forest site receiving continual papermill sludge applications: a soil column study

Duncan, Carla S. 10 October 2009 (has links)
Successful renovation of wastewater and sludge via land application depends upon sludge-induced soil changes associated with carbon (C) and nitrogen (N) cycles within the soil/plant system. The C, N, and hydrologic cycles within a soil/sludge system receiving a year-round, daily application of paper mill sludge were studied. Soil samples were collected from three locations on a land application site in the Piedmont of Virginia that had received papermill sludge applications for six, two, and no prior years. The average application rate was 4.4 cm/wk, each week of the year, with a N loading of 700 kg N ha⁻¹yr-⁻¹. The column study showed that C and N were still accumulating on the land application site after 6 years, but at a decreasing rate. Based on this study, C accumulation will level out after 13 years of application, but N will continue to accumulate for almost 30 years. As application period increased, soil bulk density increased in the O, A, and B horizons, the percentage of non-capillary porosity fell below 10% in the A horizon and approached zero in the B horizon, and there was a dramatic decrease in the soil's hydraulic conductivity in both the A and B horizons. Nitrogen leaching is expected to increase with time due to high amounts of N in the papermill sludge, a continued narrowing of the C:N ratio, a high percentage of nitrification, and low denitrification rates. Experimental timing and rates of sludge additions were imposed to alter the aerobic/anaerobic properties of the soil system to determine the conditions under which optimum C and N mineralization, nitrification, and denitrification would occur. Application rates were factorially arranged for single or multiple doses on a daily or alternating schedule. The C decomposition and N mineralization processes were both optimized with an increase in the length of cycle; they were maximized with an alternating 9 days on/9 off application schedule. The nitrification potential also increased with the length of cycling, with an average nitrification rate of 96%. Denitrification was minimal in all treatments, with an average denitrification rate of 16%. This was primarily attributed to movement of nitrate-N below the most biologically active zone in the soil column. Sludge renovation will ultimately depend upon the excess N being sequestered in plant biomass or denitrified. Proper management of these processes will ensure that wastes decompose, and that N is stored or evolved as a benign gas rather than leached at unacceptable levels. / Master of Science
28

Avaliação de impactos em agua subterranea e solo, pela pratica de disposição de efluente desinfetado de lagoa anaerobia na agricultura / Avaluate of contamination on ground waters for the practice of the irrigation in sewer desinfect the pool anaerobic maize culture

Bellingieri, Paulo Henrique 17 February 2005 (has links)
Orientador: Bruno Coraucci Filho / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Civil, Arquitetura e Urbanismo / Made available in DSpace on 2018-08-04T22:16:59Z (GMT). No. of bitstreams: 1 Bellingieri_PauloHenrique_M.pdf: 9365011 bytes, checksum: 6c7e81559cc6178c82c39aab2cd464f1 (MD5) Previous issue date: 2005 / Resumo: As águas subterrâneas representam a principal preocupação no processo de viabilização do reúso agrícola, como prática de pós-tratamento e disposição final de esgotos sanitários. O presente trabalho visa avaliar a possível contaminação gerada pela disposição controlada de efluente de tratamento secundário no cultivo de milho, e identificar a lâmina hídrica ideal para a irrigação da cultura, aliando as necessidades da engenharia sanitária com as da engenharia agrícola. Consistiu na análise de amostras do lençol freático, coletadas periodicamente durante duas saltas consecutivas, sendo uma na estação chuvosa e outra na estação seca. Os parâmetros analisados foram: pH, condutividade elétrica, Cr, Pb, Ni, Cd, Cu, Zn e N-N03-. Uma rede de poços de monitoramento foi instalada na área de pesquisa, contendo 10 poços locados a jusante de cada parcela para avaliação em função do risco à saúde pública. A variação do comportamento do lençol freático foi monitorada pela confecção de mapas potenciométricos sazonais e realização de slug test para obtenção da condutividade hidráulica dos poços de monitoramento. Os resultados permitiram concluir que a aplicação de efluentes sanitários na agricultura, via sulcos rasos, causou alguns impactos negativos às propriedades do solo e água subterrânea, além de proporcionar benefícios para a cultura, quando da reposição de água ao solo em períodos de estiagem / Abstract: Groundwaters represent the main concern in the process of viabilization of agriculture reuse, as practice of post-cure and final disposal of sanitary sewers. The present research aims to evaluate the possible contamination generated for the controlled disposal of the sewer of secondary treatment in the maize culture, and to identify the ideal hydric blade for the irrigation of the maize culture, uniting the necessities of sanitary and agricultural engineering. It consisted in the analysis of samples of the water table, collected periodically during two consecutive harvests, one in the rainy and another in the dry period. Were analyzed the following parameters: pH, electrical conductance, Cr, Pb, Ni, Cd, Cu, Zn and N-NO3 . A net of monitoring wells was installed in the research area, with 10 leased wells the downward of each parcel for evaluation in function of the risk to the public health. The variation of the behavior of the water table was monitored by the confection of potenciometric maps and accomplishment of slug test for attainment by the hydraulic conductivity of the monitoring wells. The results allowed to conclude that the application of sanitary effluent in agriculture, in saw ridges fIat, did not cause significant negative alterations in the properties of the ground and underground water, besides providing benefits for the maize culture, within of the replacement water soil in dry periods / Mestrado / Saneamento e Ambiente / Mestre em Engenharia Civil
29

Utilização de esgotos tratados em reatores anaeróbios no cultivo de girassol / Use of treated wastewater in anaerobic reactors in sunflower cultivation

Aguiar, Rosa Helena, 1952- 19 July 2013 (has links)
Orientadores: Durval Rodrigues de Paula Junior, Sylvio Luis Honório / Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Agrícola / Made available in DSpace on 2018-08-23T17:03:06Z (GMT). No. of bitstreams: 1 Aguiar_RosaHelena_D.pdf: 2411611 bytes, checksum: cc0a7bb404d742457c915d8126132bf5 (MD5) Previous issue date: 2013 / Resumo: O saneamento além de ser importante para a preservação dos recursos naturais representa uma ação preventiva eficaz para a melhoria do bem estar e da qualidade de vida da população nas questões relacionadas à saúde pública. A prática do uso de água residuária tem grandes vantagens, sobremaneira no aporte de nutrientes às plantas, fator que contribui para um crescimento mais rápido. Nesta pesquisa optou-se por utilizar o girassol (Helianthus annuus L.) ornamental que foi irrigado com águas residuárias. Objetivou-se a viabilidade do uso da área com disposição de esgoto tratado em reatores anaeróbios, por meio da avaliação do seu desenvolvimento e da sua produtividade durante três diferentes épocas de semeadura, visando reduzir os custos com nutrientes. Realizou-se esse experimento na área experimental da Faculdade de Engenharia Agrícola FEAGRI/UNICAMP, e foram avaliados cinco diferentes experimentos, dois deles por meio de reuso de efluentes de reatores - Upflow Anaerobic Sludge Blanket (UASB) e Reator Anaeróbio Compartimentado (RAC) associado a filtros anaeróbios, enquanto que os outros foram constituídos de: Testemunha, sem qualquer tipo de irrigação; com irrigação, utilizando somente água tratada, e com água tratada em área fertilizada com NPK. Foram avaliados respostas fitomorfológicas da cultura, assim como: diâmetro dos caules (DC); altura das plantas (HP); diâmetro dos capítulos (DCp); massa seca dos caules e das folhas (MS); número de folhas (NF) e sua produtividade. Os sistemas modulares (UASB e RAC) de tratamento de esgoto apresentaram um bom desempenho, com elevados valores de remoção de SSed (98,72; 98,36%), e DQO (72,37; 75,79%) não havendo diferença significativa entre os sistemas de tratamento. Constatou-se também que os canteiros com tratamentos com reuso de efluentes promoveram alteração na fertilidade do solo, com o aumento nos valores de saturação por bases (V%) na profundidade de 0 - 20 cm. Analisando os efeitos sobre a cultura nos três plantios, verificou-se um melhor desenvolvimento nos canteiros com os tratamentos do efluente, quando comparado com os demais tratamentos principalmente no segundo e terceiro plantio. Sistemas modulares de tratamento de esgotos associados ao reuso agrícola de seus efluentes podem agregar valores à produção agrícola, podendo ser utilizado inclusive no período de chuvas e em locais onde há escassez de água pluvial / Abstract: Sanitation is also important for the preservation of natural resources, represents an effective preventive action to improve the well-being and quality of life of the population on issues related to public health. The practice of using wastewater has great advantages, particularly in the supply of nutrients to plants, factor that contributes to a faster growth. In this research we decided to use the Sunflower (Helianthus annuus L.) ornamental that was irrigated with wastewater. The viability of the use of the area with provision of treated sewage in anaerobic reactors, by assessing their development and their productivity during three different periods of sowing to reduce costs with nutrients. This research was developed in the experimental area of the Faculty of agricultural engineering FEAGRI/UNICAMP, and evaluated five different treatments, two of them by means of Upflow Anaerobic Sludge Blanket reactors (UASB) and Anaerobic Reactor Chambered (ARC) associated with anaerobic filters, while the others were made up of: witness, without any kind of irrigation; with irrigation, using only treated water and treated water in the area fertilized with NPK. Fitomorfológicas culture responses were evaluated as: diameter of stems (DS); plant height (HP); diameter of the chapters (DCp); dry mass of stems and leaves (DM); number of leaves (NF) and your productivity. Modular systems (UASB and ARC) sewage treatment showed a good performance, with high values of removing SSed (98.72; 98.36), and COD (72.37; 75.79) with no significant difference between the treatment systems. It was noted also that the flower beds with wastewater reuse treatments promoted change in the fertility of the soil, with the increase in base saturation values (V%) at the depth of 0-20 cm. Analyzing the effects on culture in three plantations, there was a better development in the flower beds with the effluent treatments, when compared with the other treatments mainly in the second and third planting. Modular wastewater treatment system associated with the agricultural reuse of wastewater can add value to their agricultural production, and can be used throughout the year even in places where there is scarcity of rainwater / Doutorado / Agua e Solo / Doutor em Engenharia Agrícola
30

The management and regulation of the beneficial use of sewage sludge as an agricultural soil amendment in Riverside County

Prinz, William Ernst 01 January 1996 (has links)
No description available.

Page generated in 0.0996 seconds