• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 40
  • 6
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 67
  • 67
  • 31
  • 20
  • 19
  • 18
  • 18
  • 15
  • 13
  • 12
  • 12
  • 12
  • 11
  • 9
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Pre- and post-copulatory sexual selection in the fowl, Gallus gallus

Løvlie, Hanne January 2007 (has links)
The evolutionary goal of individuals is reproduction and sexual selection favours traits improving reproductive success. When males invest less than females in offspring, males have potentially a higher reproductive rate than females. This typically results in sex-specific reproductive strategies of male-male competition and female choice of mating partner. Under polyandry, sexual selection can continue after copulation as sperm competition and cryptic female choice. This thesis focuses on male and female pre- and post-copulatory reproductive strategies in the promiscuous red junglefowl, Gallus gallus ssp., and its domestic subspecies the domestic fowl, Gallus gallus domesticus. Males impose high re-mating rates on females, which triggers female resistance in copulations. In addition, when sexual harassment increases, females re-mate at times of day when male mating propensity is lower, to avoid intense sexual harassment. Males allocate sperm supplies differentially according to (i) variation in female polyandry and own competitive ability, (ii) earlier sperm investment in a female, and (iii) female reproductive quality, signalled by female comb size. Males also perform ‘aspermic’ copulations (i.e. copulations with no semen transfer), which inhibit polyandry and in turn reduce sperm competition. In mating opportunities with relatives, males do not avoid inbreeding. However, females avoid inbreeding before copulation through kin recognition and after copulation by selecting against related males’ sperm. These results show that selection on males to re-mate at higher rates than females and copulate indiscriminately according to partner relatedness, trigger counteracting female responses, creating the potential for sexual conflict over fertilisation. Teasing apart pre- and post-copulatory strategies and the contribution of each sex therefore becomes crucial in order to understand the evolution of reproductive strategies and the mechanisms affecting paternity.
42

Evolutionary quantitative genetics and genomics applied to the study of sexually dimorphic traits in wild bighorn sheep (Ovis canadensis)

Poissant, Jocelyn Unknown Date
No description available.
43

Evolutionary quantitative genetics and genomics applied to the study of sexually dimorphic traits in wild bighorn sheep (Ovis canadensis)

Poissant, Jocelyn 06 1900 (has links)
The independent evolution of the sexes may often be constrained if male and female homologous traits share a similar genetic architecture. Thus, cross-sex genetic covariance is assumed to play a key role in the evolution of sexual dimorphism (SD) with consequent impacts on sexual selection, population dynamics and the speciation process. I used quantitative genetics tools to assess the importance of sex-specific genetic variance in facilitating the evolution of body mass and horn size SD in wild bighorn sheep from Ram Mountain, Alberta. I also developed a bighorn sheep genetic linkage map composed of 247 microsatellite markers to gain insights about the genetic architecture of trait variation. Finally, I conducted systematic reviews and meta-analyses of published cross-sex genetic correlations (rMF, a standardized estimate of cross-sex genetic covariance) to test basic hypotheses about the importance of sex-specific genetic variance in the evolution of SD and mechanisms responsible for generating such variance. My results demonstrated that sex-specific genetic variance was present in bighorn sheep and that it likely played an important role in alleviating intralocus sexual conflicts. The quantitative trait locus (QTL) mapping analysis resulted in the identification of numerous loci influencing body mass and horn dimensions, some of which had apparent sex-specific effects. An analysis of 553 rMF estimates recovered from 114 published sources allowed demonstrating that 1) the evolution of SD was generally constrained by positive cross-sex genetic covariance, 2) levels of SD were often sub-optimal, and 3) sex-specific genetic variance was an important mechanism allowing the evolution of SD. In addition, I confirmed the long-standing hypothesis of a general decline in rMF with age. Sexual dimorphism is an important evolutionary phenomenon, but our understanding of its evolution is still limited. After decades of speculation, my research has provided clear empirical evidence for the importance of sex-specific genetic variance in allowing its evolution. / Ecology
44

Determinants of genomic diversity in the collared flycatcher (Ficedula albicollis)

Dutoit, Ludovic January 2017 (has links)
Individuals vary from each other in their genetic content. Genetic diversity is at the core of the evolutionary theory. Rooted in a solid theoretical framework developed as early as the 1930s, current empirical observations of genomic diversity became possible due to technological advances. These measurements, originally based on a few gene sequences from several individuals, are becoming possible at the genome scale for entire populations. We can now explore how evolutionary forces shape diversity levels along different parts of the genome. In this thesis, I focus on the variation in levels of diversity within genomes using avian systems and in particular that of the collared flycatcher (Ficedula albicollis). First, I describe the variation in genetic diversity along the genome of the collared flycatcher and compare it to the amount of variation in diversity across individuals within the population. I provide guidelines on how a small number of makers can capture the extent of variability in a population. Second, I investigate the stability of the local levels of diversity in the genome across evolutionary time scales by comparing collared flycatcher to the hooded crow (Corvus (corone) corone). Third, I study how selection can maintain variation through pervasive evolutionary conflict between sexes. Lastly, I explore how shifts in genome-wide variant frequencies across few generations can be utilised to estimate the effective size of population.
45

Developmental mechanisms of adaptive phenotypes and associated ecological relevance in the semiaquatic bugs / Mécanismes développementaux des phénotypes adaptatifs et leur importance écologique chez les insectes semi-aquatiques

Crumière, Antonin 14 December 2017 (has links)
Comprendre comment est générée la diversité biologique est un enjeu majeur de la biologie évolutive. Chaque espèce vit dans un environnement écologique qui lui est propre et dans lequel elle s’est adaptée au cours de l’évolution par les moyens de la sélection naturelle. Chaque espèce est également soumise à la sélection sexuelle contribuant au dimorphisme entre les sexes. Les traits phénotypiques associés au succès évolutif sont formés lors du développement par l’action de gènes qui sont transmis de génération en génération. Ces traits et ces gènes varient d’une espèce à une autre et contribuent directement à la diversité morphologique. La compréhension des interactions entre les mécanismes développementaux et les pressions écologiques permettent de mieux comprendre les processus qui influent sur la diversité morphologique et l’évolution des espèces. Obtenir une vision intégrative est un réel défi et demande de combiner diverses approches. Au cours de ma thèse, j’ai utilisé les insectes semi-aquatiques (Gerromorphes) qui sont un modèle permettant de lier évolution, écologie et développement. En utilisant différentes approches j’ai pu mettre en évidence des gènes impliqués dans le développement de divers traits adaptatifs, l’importance de ces traits dans un contexte écologique et leur impact sur l’évolution du groupe des Gerromorphes. L’ensemble des résultats obtenus améliore notre compréhension de comment sélection naturelle et sélection sexuelle, en agissant sur les mécanismes génétiques, génèrent de la diversité morphologique. / Understand how biodiversity is generated is a major goal in evolutionary biology. Every species live in a specific ecological habitat where they adapted during evolution by the mean of natural selection. Every species is also under sexual selection that generates dimorphism between the sexes. Adaptive traits contributing to evolutionary success are shaped during development by the action of genes that are transmitted through generations. These traits and genes vary across species and directly contribute to generate morphological diversity. The study of the interactions between developmental genetic mechanisms and selective ecological pressures allow a better understanding of the processes generating morphological diversity and driving the evolution of species. Obtain an integrative view is a challenge and required the combination of different approaches. During my PhD, I used the semiaquatic bugs (Gerromorpha) that are model systems allowing to link evolution, ecology and development. By using various approaches I could highlight genes involved in the development of different adaptive traits, the relevance of these traits in an ecological context and their impact on the evolution of the group of Gerromorpha. Altogether these results improve our understanding of how natural and sexual selection, by acting on genetic mechanisms, generate morphological diversity.
46

Experimental Studies of the Divergence of Pre- and Postcopulatory Phenotypes in Male Drosophila

Kwok, Kevin 13 May 2021 (has links)
ABSTRACT A major focus in biology is understanding the diversification of life and the processes that cause it. Much of this diversity is in the form of phenotypic variation among populations and species. In this thesis, I investigate two separate aspects of such phenotypic divergence. The first is the divergence of male mate preferences and their potential contribution to precopulatory sexual isolation and speciation. The second is the divergence of postcopulatory phenotypic divergence in the form of seminal fluid protein expression. With respect to the first aspect, in two separate experiments I investigated the contribution of male mate preferences to sexual isolation between two closely related fruit fly species experiencing differential costs to hybridization, Drosophila recens and Drosophila subquinaria. Male mate preferences are of particular interest because of their potential contribution to sexual isolation, a form of reproductive isolation which can contribute to speciation in sexually reproducing species. In the first experiment, I test for the presence of male mate preferences in each of the two species and whether the relative strength of the preference is concordant with the cost of hybridization. I found that that D. subquinaria males indiscriminately courted both their own (i.e. homospecific) females and heterospecific D. recens females. While D. recens from allopatry showed a similar pattern, those from sympatry courted their own females more than heterospecific females, indicating a pattern of reproductive character displacement. In the second experiment I test the role of learning in the context of these male mate preference in D. recens, and whether learning also showed a pattern of reproductive characteristic. I did not find evidence of learning in that D. recens males did not reduce their courting intensity towards heterospecific females after experiencing rejection by similar females. Consequently, I did not find an indication of reproductive character displacement. Finally, with respect to postcopulatory phenotypic divergence, I studied differences in seminal fluid protein expression between experimental populations of D. melanogaster experiencing one of three mating environments allowing for differing opportunities of mate competition and the environment in which it took place. These three mating environments include one in which mate competition was absent (MCabsent,), one in which mate competition occurred in a small, structurally simple environment (MCsimple), and one in which mate competition occurred in a larger, somewhat more complex environment (MCcomplex,). Male seminal fluids are of particular interest due to their ability to mediate postcopulatory competition between males and, therefore, can be used to manipulate females to a male’s own fitness benefit, potentially at her expense (i.e. sexual conflict). I investigated divergence in one particular seminal fluid protein implicated in sexual conflict, sex peptide (Acp70A). Whereas, gene expression levels among males from the three-mating treatment did not differ on average, relative stored quantities did, with MCcomplex males carrying significantly less sex peptide than either of MCabsent or MCsimple males (which did not differ from one another). This result suggests that mate competition and the environment in which it occurs play a significant role in the divergence of sex peptide phenotypes. ABSTRAIT Un objectif majeur de la biologie est de comprendre la diversification de la vie et les processus qui la provoquent. Une grande partie de cette diversité se présente sous la forme de variations phénotypiques entre les populations et les espèces. Dans cette thèse, j'étudie deux aspects distincts d'une telle divergence phénotypique. Le premier est la divergence des préférences des mâles et leurs contributions potentielles à l'isolement sexuel pré-copulatoire et à la spéciation. Le second est la différence de la divergence phénotypique post-copulatoire sous la forme de l'expression des protéines du liquide séminal. En ce qui concerne le premier aspect, dans deux expériences distinctes, j'ai étudié la contribution des préférences de compagnon mâle à l'isolement sexuel entre deux espèces de mouches des fruits étroitement liées subissant des coûts différentiels d'hybridation, Drosophila recens et Drosophila subquinaria. Les préférences des mâles sont particulièrement intéressantes en raison de leurs contributions potentielles à l'isolement sexuel, une forme d'isolement reproductif qui peut contribuer à la spéciation des espèces se reproduisant sexuellement. Dans la première expérience, je teste la présence de préférences de compagnon mâle dans chacune des deux espèces et si la force relative de la préférence est concordante avec le coût de l'hybridation. J'ai constaté que les mâles de D. subquinaria courtisaient sans discernement à la fois leurs propres femelles (c'est-à-dire homospécifiques) et les femelles hétérospécifiques de D. recens. Alors que D. recens de l'allopatrie a montré un modèle similaire, ceux de la sympatrie courtisaient leurs propres femelles plus que les femelles hétérospécifiques, indiquant un modèle de déplacement du caractère reproducteur. Dans la deuxième expérience, je teste le rôle de l'apprentissage dans le contexte de ces préférences de compagnon masculin dans D. recens, et si l'apprentissage a également montré un modèle de caractéristique de reproduction. Je n'ai pas trouvé de preuve d'apprentissage dans la mesure où les mâles D. recens ne réduisaient pas leur intensité de fréquentation envers les femelles hétérospécifiques après avoir été rejetés par des femelles similaires. Par conséquent, je n'ai pas trouvé d'indication de déplacement du caractère reproducteur. Enfin, en ce qui concerne la divergence phénotypique post-copulatoire, j'ai étudié les différences dans l'expression des protéines du liquide séminal entre les populations expérimentales de D. melanogaster connaissant l'un des trois environnements d'accouplement, permettant différentes possibilités de compétition de compagnon et l'environnement dans lequel elle a eu lieu. Ces trois environnements d'accouplement incluent un environnement dans lequel la compétition entre partenaires était absente (MCabsent,), un dans lequel la compétition entre partenaires se produisait dans un petit environnement structurellement simple (MCsimple) et un dans lequel la compétition entre partenaires se produisait dans un environnement plus grand et un peu plus complexe (MCcomplexe,). Les fluides séminaux mâles sont particulièrement intéressants en raison de leur capacité à négocier la compétition post-copulatoire entre les mâles et, par conséquent, peuvent être utilisés pour manipuler les femelles dans l'intérêt de la forme physique d'un mâle, potentiellement à ses dépens (c'est-à-dire conflit sexuel). J'ai étudié la divergence dans une protéine du liquide séminal particulière impliquée dans un conflit sexuel, le peptide sexuel (Acp70A). Alors que les niveaux d'expression génique chez les mâles du traitement à trois accouplements ne différaient pas en moyenne, les quantités relatives stockées le faisaient, les mâles MCcomplexe portant significativement moins de peptide sexuel que les mâles MCabsent ou MCsimple (qui ne différaient pas les uns des autres). Ce résultat suggère que la compétition de partenaire et l'environnement dans lequel elle se produit jouent un rôle important dans la divergence des phénotypes des peptides sexuels.
47

Habitat composition, sexual conflict and life history evolution in Coelopa frigida

Edward, Dominic Alexander January 2008 (has links)
This thesis describes an investigation into the effects of habitat composition, principally the composition of algae in a wrack bed, on the life history of the seaweed fly, Coelopa frigida. The mating system of C. frigida is dominated by intense sexual conflict characterised by frequent harassment by males leading to a vigorous pre-mating struggle. This response leads to sexual selection for large male size and sexual dimorphism. The mating behaviour of C. frigida is affected by their environment, with exposure to brown algae inducing harassment in males and oviposition in females. Despite more than two decades of research into coelopid reproduction little is known about how habitat composition alters the patterns and processes of sexual conflict. Studies contained in this thesis consider environmental influences that both directly and indirectly influence sexual conflict. Direct effects of the environment are measured by conducting mating trials following culture of C. frigida on different species of algae and by exposing males to different species of algae. This work is accompanied by studies of larval development and adult survival on different algae. In recent years it has been observed that the distribution of European coelopids has undergone a northward range shift. An investigation into the current distribution of European coelopid species and a discussion of the effects of climate change that may have caused this change is included. Finally, the use of stable isotope analysis to determine the diet of wild coelopids and alternative statistical methods to analyse mating trials are described.
48

Polyandry and the evolution of reproductive divergence in insects

Nilsson, Tina January 2004 (has links)
<p>Multiple mating by females is common in nature. Yet, the evolution and maintenance of polyandry remains a bit of an evolutionary puzzle. It was my aim in this thesis to reach a greater understanding of this phenomenon as well as to investigate the consequences of polyandry on the evolution of reproductive divergence in insects. In an extensive meta analysis addressing the direct effects of multiple mating on female fitness in insects, I found that insects gain from multiple matings in terms of increased lifetime offspring production. In species without nuptial feeding, increased mating rate leads to decreased female lifespan and my results strongly support the existence of an intermediate optimal female mating rate. However, results from an experimental study where I examined the relationship between female fitness and mating rate in the bean weevil (Callosobruchus maculatus) showed that female fitness was maximized at two alternative mating rates, indicating that some species may exhibit a more complex relationship between the costs and benefits of mating. In the meta analysis on species with nuptial feeding, I found only positive effects of increased mating rate and the puzzle is rather what constrains the actual mating rates of females in these groups.</p><p>Sexual selection is a very potent driver of rapid evolutionary change in reproductive characters. Most research has focussed on precopulatory sexual selection, but in promiscuous species sexual selection continues after copulation and variance in male fertilization success gives rise to postcopulatory sexual selection. In this thesis I found that three allopatric populations of the red flour beetle (Tribolium castaneum) have diverged in traits related to reproduction. Male genotype affected all aspects of female reproduction, but more interestingly, males and females interacted in their effect on offspring production and reproductive rate, showing that the divergence was due to the evolution of both male and female reproductive traits.</p><p>When studying postcopulatory sexual selection, sperm competition has been put forward as the main source of variance in fertilization success. The results from a set of double-mating experiments, using the same populations of flour beetles, provided strong evidence that cryptic female choice is also important in generating variance in male fertilization success. I found not only main effects of female genotype on male fertilization success but also male-female interactions which provide more unambiguous evidence for cryptic female choice. Finally, I attempted to uncover which male signals-female receptors are involved in the reproductive divergence observed in the Tribolium populations. In a double-mating experiment I manipulated female perception of two male reproductive signals, copulatory courtship and cuticular hydrocarbons, and the results indicate that, within populations, both signals are sexually selected. However, only male cuticular hydrocarbons seem to be involved in the reproductive divergence between the populations. </p><p>In conclusion, multiple mating by female insects can be understood solely in terms of direct fitness benefits resulting from increased offspring production. I have shown that postcopulatory sexual selection can lead to rapid divergence in reproductive traits related to mating and that cryptic female choice plays an important role in this divergence.</p>
49

Taxonomy, phylogeny, and secondary sexual character evolution of diving beetles, focusing on the genus Acilius

Bergsten, Johannes January 2005 (has links)
<p>Sexual conflict can lead to antagonistic coevolution between the sexes, but empirical examples are few. In this thesis secondary sexual characters in diving beetles are interpreted in the light of sexual conflict theory. Whether the male tarsal suction cups and female dorsal modifications are involved in a coevolutionary arms race is tested in two ways. First eight populations of a species with dimorphic females that varied in frequency of the morphs were investigated and male tarsal characteristics quantified. The frequency of female morphs is shown to be significantly correlated to the average number and size of male tarsal suction cups in the population, a prediction of the arms race hypothesis. Second, the hypothesis is tested in a phylogenetic perspective by optimizing the secondary sexual characters on a phylogeny. A full taxonomic revision of the genus <i>Acilius</i> is presented, including new synonyms, lectotype designations, geographic distributions based on more than five thousand examined museum specimens and the description of a new species from northeastern USA. Specimens of all species (except one possibly extinct that failed to be found in Yunnan, China 2000), were field collected between 2000 and 2003 in Sardinia, Sweden, Russia, Honshu and Hokkaido in Japan, New York, Maryland, California and Alberta. Three genes (CO1, H3 and Wingless) were sequenced from the fresh material as well as scoring a morphological character matrix all of which was used to derive a robust and complete hypothesis of the phylogenetic relationship in the group. The phylogeny was derived using Bayesian phylogenetics with Markov Chain Monte Carlo techniques and received a posterior probability of 0.85. Changes in male and female characters turned out to be perfectly correlated across the phylogeny, providing one of the best empirical examples to date of an antagonistic arms race between the sexes in a group of organisms. Finally, a review of a pitfall to phylogenetic analysis known under the name long-branch attraction (LBA), is provided. The problem is well known theoretically but has been questioned to occur in real data, and LBA has been in the core center of the hard debate between parsimony and likelihood advocates since different inference methods vary in sensitivity to the phenomenon. Most important conclusions from the review are; LBA is very common in real data, and is most often introduced with the inclusion of outgroups that almost always provide long branches, pulling down long terminal ingroup branches towards the root. Therefore it is recommended to always run analyses with and without outgroups. Taxon sampling is very important to avoid the pitfall as well as including different kind of data, especially morphological data, i.e. many LBA-affected conclusions have recently been reached by analyses of few taxa with complete genomes. Long-branch extraction (incl. outgroup exclusion), methodological disconcordance (parsimony vs modelbased), separate partition analyses (morphology vs molecules, codon positions, genes, etc), parametric simulation (incl. random outgroups), and split graphs are available relevant methods for the detection of LBA that should be used in combinations, because none alone is enough to stipulate LBA.</p>
50

Sexual conflict and male-female coevolution in the fruit fly

Friberg, Urban January 2006 (has links)
<p>Harmony and cooperation was for long believed to dominate sexual interactions. This view slowly started to change 25 years ago and is today replaced with a view where males and females act based on what is best from a costs-benefits perspective. When sex specific costs and benefits differ, concerning reproductive decision influenced by both sexes, sexual conflict will occur. The basis for discordant reproductive interests between the sexes is that males produce many small gametes, while females’ produce few and large gametes. One result of this difference is that the optimal mating rate differs between the sexes. Males, with their many small sperm, maximize their reproductive output by mating with many females, while females often do best by not mating more frequently than to fertilize their eggs, since mating often entails a cost. Sexual conflict over mating is thus an important factor shaping the interactions between the sexes. In this thesis I study this and related conflicts between the sexes, using mathematical models, fruit flies and comparative methods. Mathematical modelling was used to explore how males and females may coevolve under sexual conflict over mating. This model shows that sexual conflict over mating results in the evolution of costly female mate choice, in terms high resistance to matings, and costly exaggerated male sexual traits, aimed to manipulate females into mating. A key assumption in this model is that males which females find attractive also are more harmful to females. This assumption was tested by housing fruit fly females with either attractive or unattractive males. Females kept with attractive males were courted and mated more, and suffered a 16 percent reduction in lifetime offspring production. In another study I measured genetic variation in two antagonistic male traits used to compete over females; offence - a male’s ability to acquire new mates and supplant stored sperm, and defence - a male’s ability to induce fidelity in his mates and prevent sperm displacement when remating occurs. Independent additive genetic variation and positive selection gradients were found for both these traits, indicating an ongoing arms race between these male antagonistic traits. This arms race also had a negative impact on females, since high values of offence compromised female fitness. Genetic variation in female ability to withstand male harm was also tested for and found, indicating that females evolve counter adaptations to reduce the effect of harmful male traits. Finally, the proposed link between sexual conflict and speciation was tested. Theory suggests that perpetual sexual arms races will cause allopatric populations to evolve along different evolutionary trajectories, resulting in speciation. This theory was tested using comparative methods by contrasting the number of extant species in taxa with high and low opportunity for sexual conflict. The study showed that taxa with high opportunity for sexual conflict, on average, has four times as many species as those with low opportunity, supporting that sexual conflict is a key process in speciation.</p>

Page generated in 0.0534 seconds