• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 20
  • 4
  • 3
  • 3
  • 2
  • 1
  • Tagged with
  • 36
  • 29
  • 14
  • 12
  • 12
  • 9
  • 8
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Design of wide-field imaging shack Hartmann testbed

Schatz, Lauren H., Scott, R. Phillip, Bronson, Ryan S., Sanchez, Lucas R. W., Hart, Michael 20 September 2016 (has links)
Standard adaptive optics systems measure the aberrations in the wavefronts of a beacon guide star caused by atmospheric turbulence, which limits the corrected field of view to the isoplanatic patch, the solid angle over which the optical aberration is roughly constant. For imaging systems that require a corrected field of view larger than the isoplanatic angle, a three-dimensional estimate of the aberration is required. We are developing a wide-field imaging Shack-Hartmann wavefront sensor (WFS) that will characterize turbulence over a large field of view tens of times the size of the isoplanatic angle. The technique will find application in horizontal and downward looking remote sensing scenarios where high resolution imaging through extended atmospheric turbulence is required. The laboratory prototype system consists of a scene generator, turbulence simulator, a Shack Hartman WFS arm, and an imaging arm. The system has a high intrinsic Strehl ratio, is telecentric, and diffraction limited. We present preliminary data and analysis from the system.
2

High Dynamic Range Calibration for an Infrared Shack-Hartmann Wavefront Sensor

Smith, Daniel Gene January 2008 (has links)
Since its invention in the early seventies, the Shack-Hartmann wavefront sensor has seen a wide variety of applications and has had great success in the fields of Adaptive Optics and Ophthalmology, where interferometry is usually impractical. Its application to optical shop testing has been less visible perhaps because shop environments can be manipulated to sufficiently remove vibration and turbulence to a degree that can support interferometry. However, with the growing need to accurately test aspheric optics, the Shack-Hartmann has an advantage; its dynamic range can be manipulated through the design of the lenslet array, rather than being directly tied to the wavelength of light and therefore lessen the need for expensive null optics.When the Shack-Hartmann is pushed to the limits of dynamic range, several issues must be dealt with. First, to reach the limits of dynamic range, those limits must be well understood. This dissertation presents a graphical approach to designing the Shack-Hartmann sensor that makes the trade-off between sensitivity and dynamic range, and accuracy and resolution intuitively clear. Next, the spots that once landed neatly in the region behind each lenslet, may now wander several lenslets away and the data reduction must be able handle this. This dissertation presents a novel and robust method for sorting these widely wondering spots and is shown to work in measurements of highly aspheric elements. Finally, in the high dynamic range regime, induced aberrations can severely limit the accuracy of the instrument. In this dissertation, these non-linear and measurement-dependent errors are studied in detail and a method of compensation is presented along with experimental results that illustrate the efficacy of the approach.
3

Wavefront Sensor For Eye Aberrations Measurements

Curatu, Costin 01 January 2009 (has links)
Ocular wavefront sensing is vital to improving our understanding of the human eye and to developing advanced vision correction methods, such as adaptive optics, customized contact lenses, and customized laser refractive surgery. It is also a necessary technique for high-resolution imaging of the retina. The most commonly used wavefront sensing method is based on the Shack-Hartmann wavefront sensor. Since Junzhong Liang's first application of Shack-Hartmann wavefront sensing for the human eye in 1994, the method has quickly gained acceptance and popularity in the ophthalmic industry. Several commercial Shack-Hartmann eye aberrometers are currently available. While the existing aberrometers offer reasonable measurement accuracy and reproducibility, they do have a limited dynamic range. Although rare, highly aberrated eyes do exists (corneal transplant, keratoconus, post-lasik) that cannot be measured with the existing devices. Clinicians as well as optical engineers agree that there is room for improvement in the performance of these devices "Although the optical aberrations of normal eyes have been studied by the Shack-Hartmann technique, little is known about the optical imperfections of abnormal eyes. Furthermore, it is not obvious that current Shack-Hartmann aberrometers are robust enough to successfully measure clinically abnormal eyes of poor optical quality" Larry Thibos, School of Optometry, Indiana University. The ultimate goal for ophthalmic aberrometers and the main objective of this work is to increase the dynamic range of the wavefront sensor without sacrificing its sensitivity or accuracy. In this dissertation, we attempt to review and integrate knowledge and techniques from previous studies as well as to propose our own analytical approach to optimizing the optical design of the sensor in order to achieve the desired dynamic range. We present the underlying theory that governs the relationship between the performance metrics of the sensor: dynamic range, sensitivity, spatial resolution, and accuracy. We study the design constraints and trade-offs and present our system optimization method in detail. To validate the conceptual approach, a complex simulation model was developed. The comprehensive model was able to predict the performance of the sensor as a function of system design parameters, for a wide variety of ocular wavefronts. This simulation model did confirm the results obtained with our analytical approach. The simulator itself can now be used as a standalone tool for other Shack-Hartmann sensor designs. Finally, we were able to validate our theoretical work by designing and building an experimental prototype. We present some of the more practical design aspects, such as illumination choices and tolerance analysis methods. The prototype validated the conceptual approach used in the design and was able to demonstrate a vast increase in dynamic range while maintaining accurate and repeatable measurements.
4

Mesures optiques de profils de turbulence atmosphérique pour les futurs systèmes d'optique adaptative / Optical measurements of atmospheric turbulence profiles for future adaptive optics systems

Voyez, Juliette 06 December 2013 (has links)
L’optique adaptative classique est limitée par l'anisoplanétisme. Pour remédier à cette limitation, de nouveaux concepts, appelés optiques adaptatives grand champ, ont été développés. Ces systèmes analysent la turbulence atmosphérique dans le volume, ce qui accroît le champ de correction. Ces techniques requièrent une connaissance précise du profil de Cn2. Mon étude consiste à valider sur le ciel une nouvelle technique de mesure du profil de Cn2, appelée CO-SLIDAR, à partir des corrélations des mesures de pentes et de scintillation réalisées avec un analyseur Shack-Hartmann sur étoile binaire. Elle s’organise autour de deux grands axes. On réalise d’abord une simulation bout-en-bout de la reconstruction du profil de Cn2 dans un cas concret d’observation astronomique. On peut ainsi étudier l’impact des différentes sources d’erreur sur la reconstruction du profil de Cn2. Ceci nous permet d’améliorer la procédure d’estimation du profil de Cn2, en prenant en compte les bruits de détection. La deuxième partie de mon étude se consacre à la validation expérimentale. On dimensionne et caractérise en laboratoire un banc d’acquisition, le banc ProMeO. Ceci conduit à une bonne connaissance du fonctionnement du banc et nous permet de corriger certains effets instrumentaux. Le banc ProMeO est finalement couplé au télescope MeO de 1,5 m de diamètre. Les données acquises permettent une reconstruction du profil de Cn2, du sol jusqu’à 17 km, avec une résolution de 600 m. Les profils obtenus par la méthode CO-SLIDAR sont comparés avec succès à des profils issus de données météorologiques. L’ensemble de ces travaux constitue la première validation sur le ciel de la méthode CO-SLIDAR. / Classical adaptive optics is limited by anisoplanatism. New concepts, known as Wide Field Adaptive Optics systems, have been developed in order to go beyond this limitation. These systems analyse atmospheric turbulence within a volume, increasing the correction field. These techniques require a precise knowledge of the Cn2 profile. The purpose of my thesis is the on-sky validation of a new measurement method of the Cn2 profile, called CO-SLIDAR, using correlations of slopes and of scintillation, both measured with a Shack-Hartmann on a binary star. My study is organized as follows. First, we perform an end-to-end simulation of the reconstruction of the Cn2 profile in a practical astronomical case. We can thus examine the impact of the different error sources on the reconstruction of the Cn2 profile. This allows us to improve the reconstruction method, taking into account the detection noises. The second part is dedicated to the experimental validation. We design and characterize an acquisition bench, the ProMeO bench. This leads to a good knowledge of the bench's operation and we can compensate for some instrumental effects. The ProMeO bench is then coupled to the MeO 1.5 m telescope. The acquired data allow the estimation of the Cn2 profile, from the ground up to 17 km, with a resolution of 600 m. The CO-SLIDAR profiles are successfully compared with profiles estimated from meteorological data. This work is the first on-sky validation of the CO-SLIDAR method.
5

Fast and accurate image registration. Applications to on-board satellite imaging. / Recalage rapide et précis des images. Applications pour l'imagerie satellite

Rais, Martin 09 December 2016 (has links)
Cette thèse commence par une étude approfondie des méthodes d’estimation de décalage sous-pixeliques rapides. Une comparaison complète est effectuée prenant en compte problèmes d’estimation de décalage existant dans des applications réelles, à savoir, avec différentes conditions de SNR, différentes grandeurs de déplacement, la non préservation de la contrainte de luminosité constante, l’aliasing et, surtout, la limitation des ressources de calcul. Sur la base de cette étude, en collaboration avec le CNES (l’agence spatiale française), deux problèmes qui sont cruciaux pour l’optique numérique des satellites d’observation de la terre sont analysés. Nous étudions d’abord le problème de correction de front d’onde dans le contexte de l’optique actif. Nous proposons un algorithme pour mesurer les aberrations de front d’onde sur un senseur de type Shack-Hartmann (SHWFS en anglais) en observant la terre. Nous proposons ici une revue de l’état de l’art des méthodes pour le SHWFS utilisé sur des scènes étendues (comme la terre) et concevons une nouvelle méthode pour améliorer l’estimation de front d’onde, en utilisant une approche basée sur l’équation du flot optique. Nous proposons également deux méthodes de validation afin d’assurer une estimation correcte du front d’onde sur les scènes étendues. Tandis que la première est basée sur une adaptation numérique des bornes inférieures (théoriques) pour le recalage d’images, la seconde méthode défausse rapidement les paysages en se basant sur la distribution des gradients. La deuxième application de satellite abordée est la conception numérique d’une nouvelle génération de senseur du type Time Delay Integration (TDI). Dans ce nouveau concept, la stabilisation active en temps réel du TDI est réalisée pour étendre considérablement le temps d’intégration, et donc augmenter le RSB des images. Les lignes du TDI ne peuvent pas être fusionnées directement par addition parce que leur position est modifiée par des microvibrations. Celles-ci doivent être compensées en temps réel avec une précision sous-pixellique. Nous étudions les limites fondamentales théoriques de ce problème et proposons une solution qui s’en approche. Nous présentons un système utilisant la convolution temporelle conjointement à une estimation en ligne du bruit de capteur, à une estimation de décalage basée sur les gradients et à une méthode multiimage non conventionnelle pour mesurer les déplacements globaux. Les résultats obtenus sont concluants sur les fronts de la précision et de la complexité. Pour des modèles de transformation plus complexes, une nouvelle méthode effectuant l’estimation précise et robuste des modèles de mise en correspondance des points d’intérêt entre images est proposée. La difficulté provenant de la présence de fausses correspondances et de mesures bruitées conduit à un échec des méthodes de régression traditionnelles. En vision par ordinateur, RANSAC est certainement la méthode la plus utilisée pour surmonter ces difficultés. RANSAC est capable de discriminer les fausses correspondances en générant de façon aléatoire des hypothèses et en vérifiant leur consensus. Cependant, sa réponse est basée sur la seule itération qui a obtenu le consensus le plus large, et elle ignore toutes les autres hypothèses. Nous montrons ici que la précision peut être améliorée en agrégeant toutes les hypothèses envisagées. Nous proposons également une stratégie simple qui permet de moyenner rapidement des transformations 2D, ce qui réduit le coût supplémentaire de calcul à quantité négligeable. Nous donnons des applications réelles pour estimer les transformations projectives et les transformations homographie + distorsion. En incluant une adaptation simple de LO-RANSAC dans notre cadre, l’approche proposée bat toutes les méthodes de l’état de l’art. Une analyse complète de l’approche proposée est réalisée, et elle démontre un net progrès en précision, stabilité et polyvalence. / This thesis starts with an in-depth study of fast and accurate sub-pixel shift estimationmethods. A full comparison is performed based on the common shift estimation problems occurring in real-life applications, namely, varying SNR conditions, differentdisplacement magnitudes, non-preservation of the brightness constancy constraint, aliasing, and most importantly, limited computational resources. Based on this study, in collaboration with CNES (the French space agency), two problems that are crucial for the digital optics of earth-observation satellites are analyzed.We first study the wavefront correction problem in an active optics context. We propose a fast and accurate algorithm to measure the wavefront aberrations on a Shack-HartmannWavefront Sensor (SHWFS) device observing the earth. We give here a review of state-of-the-art methods for SHWFS used on extended scenes (such as the earth) and devise a new method for improving wavefront estimation, based on a carefully refined approach based on the optical flow equation. This method takes advantage of the small shifts observed in a closed-loop wavefront correction system, yielding improved accuracy using fewer computational resources. We also propose two validation methods to ensure a correct wavefront estimation on extended scenes. While the first one is based on a numerical adaptation of the (theoretical) lower bounds of image registration, the second method rapidly discards landscapes based on the gradient distribution, inferred from the Eigenvalues of the structure tensor.The second satellite-based application that we address is the numerical design of a new generation of Time Delay Integration (TDI) sensor. In this new concept, active real-time stabilization of the TDI is performed to extend considerably the integration time, and therefore to boost the images SNR. The stripes of the TDI cannot be fused directly by addition because their position is altered by microvibrations. These must be compensated in real time using limited onboard computational resources with high subpixel accuracy. We study the fundamental performance limits for this problem and propose a real-time solution that nonetheless gets close to the theoretical limits. We introduce a scheme using temporal convolution together with online noise estimation, gradient-based shift estimation and a non-conventional multiframe method for measuring global displacements. The obtained results are conclusive on the fronts of accuracy and complexity and have strongly influenced the final decisions on the future configurations of Earth observation satellites at CNES.For more complex transformation models, a new image registration method performing accurate robust model estimation through point matches between images is proposed here. The difficulty coming from the presence of outliers causes the failure of traditional regression methods. In computer vision, RANSAC is definitely the most renowned method that overcomes such difficulties. It discriminates outliers by randomly generating minimalist sampled hypotheses and verifying their consensus over the input data. However, its response is based on the single iteration that achieved the largest inlier support, while discarding all other generated hypotheses. We show here that the resulting accuracy can be improved by aggregating all hypotheses. We also propose a simple strategy that allows to rapidly average 2D transformations, leading to an almost negligible extra computational cost. We give practical applications to the estimation of projective transforms and homography+distortion transforms. By including a straightforward adaptation of the locally optimized RANSAC in our framework, the proposed approach improves over every other available state-of-the-art method. A complete analysis of the proposed approach is performed, demonstrating its improved accuracy, stability and versatility.
6

Estudio de diferentes métodos de integración numérica. Aplicación en la caracterización de superficies mediante deflectometría óptica y un sensor de Shack-Hartmann

Moreno Soriano, Alfonso 31 March 2006 (has links)
Con el cambio del siglo XX al XXI, la importancia de las tecnologías ópticas, como herramientas esenciales para otras ciencias, está llamando la atención en diferentes ámbitos científicos y económicos. El desarrollo de técnicas relacionadas con la imagen óptica aparece en diferentes puntos de vista como por ejemplo, la tecnología de la información y de las comunicaciones, la salud humana y las ciencias de la vida, los sensores ópticos y nuevas lámparas para una mejora en el consumo de energía, el desarrollo de equipos destinados a procesos de fabricación en la industria, etc. Las aplicaciones en la industria han tenido un gran impacto económico: por ejemplo, todos los circuitos integrados de semiconductores que se producen en el mundo se fabrican mediante litografía óptica. El desarrollo de la industria de semiconductores ha dado un impulso a la investigación básica y al desarrollo de técnicas ópticas: la disminución de los tamaños en la fabricación implica la exigencia de nuevos materiales, nuevos componentes ópticos, nuevas fuentes de iluminación. En la actualidad, la mayoría de la población europea es usuaria de la Tecnología de la Información y de la Comunicación (del inglés, "Information Communication Technology"), por ejemplo a través de ordenadores personales, telefonía móvil, electrónica empleada en medicina, internet, control de robots inteligentes, detección de obstáculos para la guía de un vehículo,. y la calidad de este tipo de productos aumenta considerablemente cada pocos años para un mismo precio (un factor ~2 cada 3 años). La base de tal progreso se debe, en gran parte, al rápido progreso en la calidad de los componentes que se emplean en esta ICT, como por ejemplo, los circuitos integrados y su conexión con otros dispositivos. La industria semiconductora se está preparando para promover una reducción del detalle más pequeño en los circuitos integrados, por debajo de los 130 nanómetros. Tal reducción requiere una evaluación de la ausencia de gradientes ondulatorios y abruptos con una precisión de 10 nanómetros para el caso particular de obleas de 300 milímetros de diámetro. El diámetro actual standard de las obleas es de 200 milímetros aunque actualmente ya se están produciendo obleas de 300 milímetros y el objetivo es fabricar obleas todavía más grandes. Además, la velocidad de procesado aumentará hasta 100 obleas por hora. Así, el control en la producción y pulido de obleas requiere una instrumentación para la medición rápida de la topografía tridimensional que en la actualidad, no está disponible técnicamente. Otro de los problemas que aparece en la industria semiconductora concierne a los substratos que forman las obleas. La tecnología actual permite producir detalles muy pequeños mediante procesos litográficos. Esto exige mayores requerimientos en la planitud de las obleas sobre las que se depositan repetidamente circuitos integrados. El problema consiste en que la inspección de la planitud requiere mucho tiempo, varias horas para una única oblea. Otro de los problemas con los que se encuentra la industria semiconductora es el procesado de las obleas. Después de la deposición de cada substrato, se neutraliza depositando una capa muy delgada de SiO2. Antes de la siguiente deposición, la oblea se somete a procesos de pulido químicos y mecánicos para conseguir de nuevo la planitud deseada. Se trata de un proceso lento que aumenta el coste de producción. Sin embargo, en un futuro inmediato se fabricarán obleas de 450 mm de diámetro mientras que las actuales son de 200 mm; de forma que se podrán depositar más circuitos integrados ganando tiempo y reduciendo el coste de producción. La situación es similar en otros campos, como por ejemplo, los dispositivos de cristal líquido: en la línea de producción se requiere un rápido control de la topografía tridimensional de dichos cristales, que tampoco está disponible en la actualidad. En este caso las dimensiones pueden llegar a ser de 1m por 1m.
7

Experimental Validation of the Generalized Harvey-Shack Surface Scatter Theory

Nattinger, Kevin T. 10 September 2018 (has links)
No description available.
8

Mesures optiques de profils de turbulence atmosphérique pour les futurs systèmes d'optique adaptative

Voyez, Juliette 06 December 2013 (has links) (PDF)
L'optique adaptative classique est limitée par l'anisoplanétisme. Pour remédier à cette limitation, de nouveaux concepts, appelés optiques adaptatives grand champ, ont été développés. Ces systèmes analysent la turbulence atmosphérique dans le volume, ce qui accroît le champ de correction. Ces techniques requièrent une connaissance précise du profil de Cn2. Mon étude consiste à valider sur le ciel une nouvelle technique de mesure du profil de Cn2, appelée CO-SLIDAR, à partir des corrélations des mesures de pentes et de scintillation réalisées avec un analyseur Shack-Hartmann sur étoile binaire. Elle s'organise autour de deux grands axes. On réalise d'abord une simulation bout-en-bout de la reconstruction du profil de Cn2 dans un cas concret d'observation astronomique. On peut ainsi étudier l'impact des différentes sources d'erreur sur la reconstruction du profil de Cn2. Ceci nous permet d'améliorer la procédure d'estimation du profil de Cn2, en prenant en compte les bruits de détection. La deuxième partie de mon étude se consacre à la validation expérimentale. On dimensionne et caractérise en laboratoire un banc d'acquisition, le banc ProMeO. Ceci conduit à une bonne connaissance du fonctionnement du banc et nous permet de corriger certains effets instrumentaux. Le banc ProMeO est finalement couplé au télescope MeO de 1,5 m de diamètre. Les données acquises permettent une reconstruction du profil de Cn2, du sol jusqu'à 17 km, avec une résolution de 600 m. Les profils obtenus par la méthode CO-SLIDAR sont comparés avec succès à des profils issus de données météorologiques. L'ensemble de ces travaux constitue la première validation sur le ciel de la méthode CO-SLIDAR.
9

Development Of An Optical System Calibration And Alignment Methodology Using Shack-hartmann Wavefront Sensor

Adil, Fatime Zehra 01 February 2013 (has links) (PDF)
Shack-Hartmann wavefront sensors are commonly used in optical alignment, ophthalmology, astronomy, adaptive optics and commercial optical testing. Wavefront error measurement yields Zernike polynomials which provide useful data for alignment correction calculations. In this thesis a practical alignment method of a helmet visor is proposed based on the wavefront error measurements. The optical system is modeled in Zemax software in order to collect the Zernike polynomial data necessary to relate the error measurements to the positioning of the visor. An artificial neural network based computer program is designed and trained with the data obtained from Zernike simulation in Zemax software and then the program is able to find how to invert the misalignments in the system. The performance of this alignment correction method is compared with the optical test setup measurements.
10

Estudio de Fenómenos Dinámicos de la Óptica del Ojo Humano

Mira Agudelo, Alejandro 14 January 2011 (has links)
Abordando las importantes características dinámicas del ojo, se han planteado una serie de experimentos que permiten el estudio de algunas de estas propiedades dinámicas, para proporcionar nueva información sobre el sistema visual. Para dichos experimentos, se han diseñado y construido tres instrumentos de medida basados todos en el concepto del sensor de Hartmann-Shack (HS), cada uno con características particulares: sensor HS de alta resolución temporal, sensor HS de campo amplio y sensor HS con iluminación invisible. Con estos instrumentos se abordan condiciones específicas que pueden afectar la dinámica del ojo, como los posibles efectos que tiene el cambio en la línea de mirada (o la torsión del ojo) sobre las aberraciones, así como las potenciales diferencias que se puede generar sobre las aberraciones cuando los sujetos observan con visión monocular o binocular, o evaluar si en el ojo existe una longitud de onda "preferida" para enfocar estímulos policromáticos. / Addressing the important dynamic characteristics of the eye, a number of experiments were performed to study some of these dynamic properties, in order to provide new information about the visual system. To carry out these experiments, three instruments were designed and implemented, all of them based on the Hartmann-Shack sensor (HS) principle, but each one with particular characteristics: high time resolution HS sensor, wide field HS sensor and HS sensor with invisible illumination. Specific conditions that can affect the dynamics of the eye were addressed with these instruments, for example the possible effects arising from changes in the line of sight (gaze) on the aberrations, or the potential differences that can be generated on aberrations when subjects are under monocular or binocular vision, or evaluate if is there a "preferential" wavelength the eye uses to focus polychromatic stimuli.

Page generated in 0.0529 seconds