• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 314
  • 66
  • 55
  • 30
  • 11
  • 8
  • 7
  • 5
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 594
  • 594
  • 303
  • 171
  • 144
  • 138
  • 103
  • 85
  • 71
  • 62
  • 60
  • 58
  • 57
  • 56
  • 55
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Transformation Induced Fatigue of Ni-Rich NiTi Shape Memory Alloy Actuators

Schick, Justin Ryan 2009 December 1900 (has links)
In this work the transformation induced fatigue of Ni-rich NiTi shape memory alloys (SMAs) was investigated. The aerospace industry is currently considering implementing SMA actuators into new applications. However, before any new applications can be put into production they must first be certified by the FAA. Part of this certification process includes the actuator fatigue life. In this study, as-received and polished at dogbone SMA specimens underwent transformation induced fatigue testing at constant loading. The constant applied loading ranged from 100 MPa to 200 MPa. Specimens were thermally cycled through complete actuation (above Af to below Mf ) by Joule heating and environmental cooling. There were three cooling environments studied: liquid, gaseous nitrogen and vortex cooled air. It was shown that polished specimens had fatigue lives that were two to four times longer than those of as-received specimens. Test environment was also found to have an effect on fatigue life. Liquid cooling was observed to be corrosive, while the gaseous nitrogen and vortex air cooling were observed to be non-corrosive. The two non-corrosive cooling environments performed similarly with specimen fatigue lives that were twice that of specimens fatigue tested in the corrosive cooling environment. Transformation induced fatigue testing of polished specimens in a non-corrosive environment at 200 MPa had an average fatigue life of 14400 actuation cycles; at 150 MPa the average fatigue life was 20800 cycles and at 100 MPa it was 111000 cycles. For all specimens constant actuation from the beginning of testing until failure was observed, without the need for training. Finally, a microstructural study showed that the Ni3Ti precipitates in the material were one of the causes of crack initiation and propagation in the actuators.
112

Discrete Preisach Model for the Superelastic Response of Shape Memory Alloys

Doraiswamy, Srikrishna 2010 December 1900 (has links)
The aim of this work is to present a model for the superelastic response of Shape Memory Alloys (SMAs) by developing a Preisach Model with thermodynamics basis. The special features of SMA superelastic response is useful in a variety of applications (eg. seismic dampers and arterial stents). For example, under seismic loads the SMA dampers undergo rapid loading{unloading cycles, thus going through a number of internal hysteresis loops, which are responsible for dissipating the vibration energy. Therefore the design for such applications requires the ability to predict the response, particularly internal loops. It is thus intended to develop a model for the superelastic response which is simple, computationally fast and can predict internal loops. The key idea here is to separate the elastic response of SMAs from the dissipative response and apply a Preisach Model to the dissipative response as opposed to the popular notion of applying the Preisach Model to the stress{strain response directly. Such a separation allows for the better prediction of internal hysteresis, avoids issues due to at/negative slopes in the stress{strain plot, and shows good match with experimental data, even when minimal input is given to the model. The model is developed from a Gibbs Potential, which allows us to compute a driving force for the underlying phase transformation in the superelastic response. The hysteresis between the driving force for transformation and the extent of transformation (volume fraction of martensite) is then used with a Preisach model. The Preisach model parameters are identi ed using a least squares approach. ASTM Standards for the testing of NiTi wires (F2516-07^sigma 2), are used for the identi cation of the parameters in the Gibbs Potential. The simulations are run using MATLAB R . Results under di erent input conditions are discussed. It is shown that the predicted response shows good agreement with the experimental data. A couple of attempts at extending the model to bending and more complex response of SMAs is also discussed.
113

The Effect of Moisture Absorption on the Physical Properties of Polyurethane Shape Memory Polymer Foams

Yu, Ya-Jen 2011 May 1900 (has links)
The effect of moisture absorption on the glass transition temperature (Tg) and stress/strain behavior of network polyurethane shape memory polymer (SMP) foams has been investigated. With our ultimate goal of engineering polyurethane SMP foams for use in blood contacting environments, we have investigated the effects of moisture exposure on the physical properties of polyurethane foams. To our best knowledge, this study is the first to investigate the effects of moisture absorption at varying humidity levels (non-immersion and immersion) on the physical properties of polyurethane SMP foams. The SMP foams were exposed to differing humidity levels for varying lengths of time, and they exhibited a maximum water uptake of 8.0 percent (by mass) after exposure to 100 percent relative humidity for 96 h. Differential scanning calorimetry results demonstrated that water absorption significantly decreased the Tg of the foam, with a maximum water uptake shifting the Tg from 67 °C to 5 °C. Samples that were immersed in water for 96 h and immediately subjected to tensile testing exhibited 100 percent increases in failure strains and 500 percent decreases in failure stresses; however, in all cases of time and humidity exposure, the plasticization effect was reversible upon placing moisture-saturated samples in 40 percent humidity environments for 24 h.
114

Design And Analysis Of A Linear Shape Memory Alloy Actuator

Soylemez, Burcu 01 January 2009 (has links) (PDF)
Shape memory alloys are new, functional materials used in actuator applications with their high power to weight ratio. The high strength or displacement usage of shape memory alloys makes them suitable for direct drive applications, which eliminate use of power transmission elements. The aim of this research is to develop the methodology and the necessary tools to design and produce linear shape memory alloy actuators to be used in missile systems, space applications, and test equipments. In this study, the test apparatus designed and built to characterize shape memory alloy thin wires is described, and then the characterization tests, modeling and control studies performed on a wire are explained. In the control studies, displacement control through strain, resistance and power feedback is investigated and different control strategies (proportional-integral, proportional-integral with feedforward loop, and neural network) are employed. The results of the characterization tests, simulations and experiments are all presented in graphical and tabular form. From the results it is concluded that through careful characterization, the behavior of SMA wire can be closely approximated through models which can be used effectively to test various control strategies in simulations. Also, satisfactory position control of SMA wires can be achieved through both classical and NN control strategies by using appropriate feedback variables and power is found to be a viable feedback variable. Lastly, a linear SMA wire actuator is designed as a case study. The actuator prototype is produced, suitable control strategies are applied and actuator is experimented to validate the theoretical assumptions. The actuator developed through this work is a technology demonstration and shows that shape memory alloy elements can be utilized in several defense and space applications contracted to T&Uuml / BiTAK-SAGE as well as certification test equipments. The development of shape memory alloy actuators that can be used in defense and later in aeronautical/space applications is a critical research and development project for national defense industry.
115

Shape memory alloy for vibration isolation and damping

Machado, Luciano G 10 October 2008 (has links)
This work investigates the use of shape memory alloys (SMAs) for vibration isolation and damping of mechanical systems. The first part of this work evaluates the nonlinear dynamics of a passive vibration isolation and damping (PVID) device through numerical simulations and experimental correlations. The device, a mass connected to a frame through two SMA wires, is subjected to a series of continuous acceleration functions in the form of a sine sweep. Frequency responses and transmissibility of the device as well as temperature variations of the SMA wires are analyzed for the case where the SMA wires are pre-strained at 4.0% of their original length. Numerical simulations of a one-degree of freedom (1-DOF) SMA oscillator are also conducted to corroborate the experimental results. The configuration of the SMA oscillator is based on the PVID device. A modified version of the constitutive model proposed by Boyd and Lagoudas, which considers the thermomechanical coupling, is used to predict the behavior of the SMA elements of the oscillator. The second part of this work numerically investigates chaotic responses of a 1- DOF SMA oscillator composed of a mass and a SMA element. The restitution force of the oscillator is provided by an SMA element described by a rate-independent, hysteretic, thermomechanical constitutive model. This model, which is a new version of the model presented in the first part of this work, allows smooth transitions between the austenitic and the martensitic phases. Chaotic responses of the SMA oscillator are evaluated through the estimation of the Lyapunov exponents. The Lyapunov exponent estimation of the SMA system is done by adapting the algorithm by Wolf and co-workers. The main issue of using this algorithm for nonlinear, rateindependent, hysteretic systems is related to the procedure of linearization of the equations of motion. The present work establishes a procedure of linearization that allows the use of the classical algorithm. Two different modeling cases are considered for isothermal and non-isothermal heat transfer conditions. The evaluation of the Lyapunov exponents shows that the proposed procedure is capable of quantifying chaos in rate-independent, hysteretic dynamical systems.
116

Experimental investigation on phase transformation of superelastic NiTi microtubes /

Li, Zhiqi. January 2002 (has links)
Thesis (Ph. D.)--Hong Kong University of Science and Technology, 2002. / Includes bibliographical references (leaves 155-160). Also available in electronic version. Access restricted to campus users.
117

Nanoreinforced shape memory polyurethane

Richardson, Tara Beth. Auad, Maria Lujan. Schwartz, Peter. January 2009 (has links)
Dissertation (Ph.D.)--Auburn University, 2009. / Abstract. Includes bibliographic references.
118

Stress-induced phase transformation and reorientation in NiTi tubes /

Ng, Kwok Leung. January 2003 (has links)
Thesis (M. Phil.)--Hong Kong University of Science and Technology, 2003. / Includes bibliographical references (leaves 94-98). Also available in electronic version. Access restricted to campus users.
119

Functional coatings on Ti-6A1-4V and NiTi shape memory alloy for medical applications

Lee, Wing-cheung., 李永祥. January 2011 (has links)
Due to its excellent biocompatibility and mechanical properties, Ti-6Al-4V alloy has been extensively used in the medical field, especially as a material for hard tissue replacement. Owing to the unique shape memory and superelastic properties, NiTi shape memory alloy (SMA, with 50.8 at.% of Ni) has been investigated for load-bearing applications in orthopedics and dentistry. Since the longevity of current metal implants is approximately 10 to 15 years, many patients need to have revision surgeries in their lifetime. Therefore, there is great interest in the long-term stability, biocompatibility, bioactivity and other properties of Ti-6Al-4V and NiTi SMA implants. Implant-associated infections also pose serious threat to the success of metal implants. The goal of this project was to investigate several low-temperature surface modification techniques, including anodization and electrochemical deposition, and formulate coatings for potential clinical applications. Accordingly, several types of coatings were synthesized on Ti-6Al-4V and NiTi SMA substrates. Various aspects of the coatings, such as morphology, chemical composition, crystallinity, phase and bioactivity, were analyzed. Firstly, a systematic study on the formation of titania nanotubes on Ti-6Al-4V by anodization was performed. Anodizing voltage and time were varied for comparisons. A dense and compact titania nanotube layer was synthesized on Ti-6Al-4V by anodizing at 25 V for 20 min. The titania nanotubes formed were rutile. After annealing at 500oC for 1 h, the titania nanotubes became anatase. The anatase phase exhibited better wettability than the rutile phase. Secondly, dense and compact apatite coatings were formed on NiTi SMA samples through electrochemical deposition using mainly double-strength simulated body fluid (2SBF) as the electrolyte. The deposition conditions were varied and apatite coating characteristics studied. With the inclusion of collagen molecules (0.1 mg/ml) in the electrolyte (2SBFC), apatite/collagen composite coatings were fabricated. Collagen fibrils were not only observed on the surface of composite coatings but also were embedded inside in the coatings and at the coating-substrate interface. Results obtained from transmission electron microscopic and X-ray diffraction analyses showed that the apatite crystals in apatite coatings and apatite/collagen composite coatings were calcium-deficient carbonated hydroxyapatite. Apatite/collagen composite coatings exhibited excellent hydrophilicity, whereas apatite coatings displayed hydrophobic surfaces. Finally, gentamicin-loaded, tobramycin-loaded, and vancomycin-loaded apatite coatings and apatite/collagen composite coatings were synthesized on NiTi SMA samples through electrochemical deposition using different drug concentrations in the electrolytes. A comparative study of apatite coatings and apatite/collagen composite coatings as drug delivery vehicles were conducted. Different aspects of antibiotic-loaded coatings (surface characteristics, chemical composition, wettability, etc.) and in vitro release behaviour were investigated. The antibiotics were physically embedded in coatings during coating formation. Upon sample soaking in phosphate-buffered saline (PBS), the release profiles established for antibiotic-loaded coatings demonstrated different levels of initial burst release and subsequent steady release characteristics. Apatite coatings and apatite/collagen coatings displayed preferential incorporation of specific antibiotics. For instance, apatite/collagen coatings showed better vancomycin incorporation than apatite coatings and the incorporation of vancomycin was better than tobramycin for apatite/collagen coatings. Apatite coatings demonstrated better tobramycin incorporation than apatite/collagen composite coatings. / published_or_final_version / Mechanical Engineering / Master / Master of Philosophy
120

Shape Memory Alloy Fracture as a Deployment Actuator

Buban, Darrick Matthew January 2013 (has links)
Many applications require deployable structures to meet operational objectives such as satellites that unfurl antenna arrays. Typically, most deployment efforts involve the use of explosive and non-explosive actuators (EAs and NEAs respectively) that have implementation drawbacks such as the expense associated with special handling and the bulk encountered with mounting the devices. To mitigate EA and NEA drawbacks, the integration of shape memory alloys (SMA) as a deployment actuator was investigated. SMA specimens were heated and pulled to failure developing an environmental and structural operating envelope for application as deployment mechanisms. A Finite Element Model (FEM) was also created to model the response behavior induced during specimen testing so that modeled performance could be used in lieu of testing when integrating SMA actuators into deployment systems. Experimental results verified that SMAs can be implemented as deployment actuators. Recorded data showed that SMA fracture is possible over a wide range of temperatures and strains, filling a material performance gap not found in the literature. The obtained information allows design engineers to appropriately size SMAs given design requirements achieving the desired deployment effects. The Finite Element Model was partially successful, capable of emulating strained ambient material behavior up to approximately 6.1%. The limited response is due to lack of experimentally derived large stress and strain available for model emulation.

Page generated in 0.0287 seconds