• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1521
  • 602
  • 221
  • 185
  • 120
  • 66
  • 40
  • 37
  • 36
  • 36
  • 36
  • 36
  • 36
  • 32
  • 30
  • Tagged with
  • 3585
  • 721
  • 616
  • 457
  • 451
  • 436
  • 412
  • 361
  • 282
  • 263
  • 230
  • 230
  • 229
  • 217
  • 216
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
301

Strain distribution in OSB and GWB in wood frame shear walls /

Sinha, Arijit. January 2007 (has links)
Thesis (M.S.)--Oregon State University, 2007. / Printout. Includes bibliographical references (leaves 35-36). Also available on the World Wide Web.
302

Punching Shear of Flat Slabs

Lyčka, Lukáš January 2019 (has links)
The use of flat slabs in constructions due to its many functional and economic advantages is wide-spread. Behavior of flat slabs in shear and flexure is a fairly complex problem. Therefore, the punching shear failure belongs to one of the most critical aspects in the design of concrete buildings. Over the last decades several buildings have collapsed due to the failure of the punching shear strength, resulting in loss of lives and financial damages. These disasters revealed gaps in the current (or former) design codes and recommendations. As a part of theoretical framework of the dissertation a method for predicting the punching shear strength of flat slabs was developed. Several experiments on scaled down slabs were conducted in order to verify the proposed method and for optimization of its parameters. Proposed method in development predicts the punching shear for slabs without shear reinforcement according to the EC2 and replaces the area of the shear crack with a system of struts and ties.
303

Assessing the In-plane Shear Failure of GFRP Laminates and Sandwich Structures

Oluwabusi, Oludare E. January 2018 (has links)
No description available.
304

Design Manual Development for a Hybrid, FRP Double-Web Beam and Characterization of Shear Stiffness in FRP Composite Beams

Schniepp, Timothy John 27 August 2002 (has links)
Fiber-reinforced polymeric (FRP) composites are being considered for structural members in bridge construction as lighter, more durable alternatives to steel and concrete. Extensive testing and analysis of a pultruded, hybrid double web beam (DWB) developed for use in bridge construction has been conducted at Virginia Tech. A primary purpose of this testing is the development of a structural design guide for the DWB, which includes stiffness and strength data. The design manual also includes design allowables determined through a statistical analysis of test data. Static testing of the beams, including failure tests, has been conducted in order to determine such beam properties as bending modulus, shear stiffness, failure mode, and ultimate capacity. Measuring and calculating the shear stiffness has proven to be an area of particular interest and difficulty. Shear stiffness is calculated using Timoshenko beam theory which combines the shear stiffness and shear area together along with a shear correction factor, k, which accounts for the nonuniform distribution of shear stress/strain through the cross-section of a structure. There are several methods for determining shear stiffness, kGA, in the laboratory, including a direct method and a multi-span slope method. Herein lays the difficulty as it has been found that varying methods produces significantly different results. One of the objectives of current research is to determine reasons for the differences in results, to identify which method is most accurate in determining kGA, and also to examine other parameters affecting the determination of kGA that may further aid the understanding of this property. This document will outline the development of the design guide, the philosophy for the selection of allowables and review and discuss the challenges of interpreting laboratory data to develop a complete understanding of shear effects in large FRP structural members. / Master of Science
305

Investigation of road base shear strains using in-situ instrumentation

Hayward, Benjamin James January 2006 (has links)
The large majority of New Zealand's road network is constructed from thin surfaced unbound flexible pavements where a granular layer provides the main structural strength of the pavement. The current New Zealand empirical design theory states that permanent deformation should largely be attributed to the subgrade and that shape loss in the granular layers is simply a consequence of a previously deformed subgrade. However, recent research and field trials have indicated that basecourse shear strains may be a large contributor to rutting in unbound granular layers. The purpose of this investigation was to determine whether the shear strains induced under heavy vehicle loads can be accurately measured using in-situ induction coils and whether the shear strains are related to permanent pavement deformation. In this investigation a rosette configuration of free floating induction coils was designed to measure principal basecourse shear strains. The principal strains were then used to construct Mohr's circle of strain in order to calculate the maximum shear strain occurring in the granular layer. The rosettes were installed in two full scale test pavements at the Canterbury Accelerated Pavement Testing Indoor Facility (CAPTIF). The pavements were loaded with an 8 tonne dual wheel axle load for 1 million and 600,000 load applications respectively and strain and rut depth testing occurred periodically throughout the test life. The research showed that the rosette coil arrangement was a feasible and accurate device for measuring in-situ shear strains in granular pavement layers. Finite element modelling confirmed the accuracy of the system. The results from the two CAPTIF pavements showed that there was a strong linear relationship between the magnitude of the basecourse shear strain and the rut depth at the end of the post construction compaction period. The investigation also showed that shear strain magnitudes in the region of 5000µƐ result in rapid shear failure in the granular layer. In addition, after the post construction compaction period had finished, the rate of change of shear strain was proportional to the rate of change of rut development. The results indicated that there was approximately a 4:1 ratio between the rate of change in rut depth and the rate of change in shear strain after the initial post construction period. Investigations into the effect of load magnitude on the magnitude of the basecourse shear strain showed that a linear relationship existed between the two parameters. Further to this, load location testing revealed that for a dual wheel configuration, 50mm of lateral wheel variation either side of a point of interest was the maximum allowable movement that would result in similar strain measurements. The research highlighted the dominance of the longitudinal tensile strain and shear strain over the vertical compressive strain within granular layers. As a result, these pavement responses should be considered in further granular pavement research in addition to the commonly used vertical compressive strains.
306

Shear Behaviour of Precast/Prestressed Hollow-Core Slabs

Celal, Mahmut Sami 12 January 2012 (has links)
Shear strength of precast/prestressed hollow-core (PHC) slabs subjected to concentrated or line loads, especially near supports, may be critical and usually is the governing criteria in the design. This study presents the second phase of a research program, undergoing at the University of Manitoba, to calibrate the shear equations in the Canadian code for predicting the shear capacity of PHC slabs. This phase includes both experimental and numerical investigations using a finite element analysis (FEA) software package. The length of bearing, void shape and size, level of prestressing and shear span-to-depth ratio were investigated. The experimental results were compared to the predictions of the Canadian, American and European codes. It was concluded that the Canadian code is unduly conservative. However, the special European code for PHC slabs resulted in better and more consistent predictions. The FEA suggested that the adequate prestressing reinforcement ratio to obtain highest shear capacity ranges between 0.7% and 1.1%.
307

Shear Behaviour of Precast/Prestressed Hollow-Core Slabs

Celal, Mahmut Sami 12 January 2012 (has links)
Shear strength of precast/prestressed hollow-core (PHC) slabs subjected to concentrated or line loads, especially near supports, may be critical and usually is the governing criteria in the design. This study presents the second phase of a research program, undergoing at the University of Manitoba, to calibrate the shear equations in the Canadian code for predicting the shear capacity of PHC slabs. This phase includes both experimental and numerical investigations using a finite element analysis (FEA) software package. The length of bearing, void shape and size, level of prestressing and shear span-to-depth ratio were investigated. The experimental results were compared to the predictions of the Canadian, American and European codes. It was concluded that the Canadian code is unduly conservative. However, the special European code for PHC slabs resulted in better and more consistent predictions. The FEA suggested that the adequate prestressing reinforcement ratio to obtain highest shear capacity ranges between 0.7% and 1.1%.
308

Effect Of Shear Walls On The Behavior Of Reinforced Concrete Buildings Under Earthquake Loading

Comlekoglu, Hakki Gurhan 01 December 2009 (has links) (PDF)
An analytical study was performed to evaluate the effect of shear wall ratio on the dynamic behavior of mid-rise reinforced concrete structures. The primary aim of this study is to examine the influence of shear wall area to floor area ratio on the dynamic performance of a building. Besides, the effect of shear wall configuration and area of existing columns on the seismic performance of the buildings were also investigated. For this purpose, twenty four mid-rise building models that have five and eight stories and shear wall ratios ranging between 0.51 and 2.17 percent in both directions were generated. These building models were examined by carrying out nonlinear time-history analyses using PERFORM 3D. The analytical model used in this study was verified by comparing the analytical results with the experimental results of a full-scale seven-story reinforced concrete shear wall building that was tested for U.S.-Japan Cooperative Research Program in 1981. In the analyses, seven different ground motion time histories were used and obtained data was averaged and utilized in the evaluation of the seismic performance. Main parameters affecting the overall performance were taken as roof and interstory drifts, their distribution throughout the structure and the base shear characteristics. The analytical results indicated that at least 1.0 percent shear wall ratio should be provided in the design of mid-rise buildings, in order to control observed drift. In addition / when the shear wall ratio increased beyond 1.5 percent, it was observed that the improvement of the seismic performance is not as significant.
309

Behaviour of continuously supported self-compacting concrete deep beams

Khatab, Mahmoud A. T. January 2016 (has links)
The present research is conducted to investigate the structural behaviour of continuously supported deep beams made with SCC. A series of tests on eight reinforced two-span continuous deep beams made with SCC was performed. The main parameters investigated were the shear span-to-depth ratio, the amount and configuration of web reinforcement and the main longitudinal reinforcement ratio. All beams failed due to a major diagonal crack formed between the applied mid-span load and the intermediate support separating the beam into two blocks: the first one rotated around the end support leaving the rest of the beam fixed on the other two supports. The amount and configuration of web reinforcement had a major effect in controlling the shear capacity of SCC continuous deep beams. The shear provisions of the ACI 318M-11 reasonably predicted the load capacity of SCC continuous deep beams. The strut-and-tie model recommended by different design codes showed conservative results for all SCC continuous deep beams. The ACI Building Code (ACI 318M-11) predictions were more accurate than those of the EC2 and Canadian Code (CSA23.3-04). The proposed effectiveness factor equations for the strut-and-tie model showed accurate predictions compared to the experimental results. The different equations of the effectiveness factor used in upper-bound analysis can reasonably be applied to the prediction of the load capacity of continuously supported SCC deep beams although they were proposed for normal concrete (NC). The proposed three dimensional FE model accurately predicted the failure modes, the load capacity and the load-deflection response of the beams tested.
310

Desenvolvimento de equipamento Ring Shear para avaliação do comportamento de solos a grandes deformações

Santos, Viviane Rocha dos January 2012 (has links)
Os movimentos de massa de solo, geralmente, estão relacionados com a mobilização da resistência de uma ou várias superfícies de ruptura pré-existentes. Dessa maneira, o conhecimento da propriedade que rege esse comportamento (resistência ao cisalhamento residual) é de extrema importância no estudo da estabilidade de solos. Segundo Skempton (1985), resistência ao cisalhamento residual é a resistência mínima constante que o solo pode atingir, a baixas taxas de cisalhamento, após sofrer grandes deslocamentos. A determinação dos parâmetros de resistência ao cisalhamento residual pode ser realizada através de ensaios de cisalhamento por torção do tipo ring shear, adequado para estudar os mecanismos atuantes na ruptura, uma vez que permite a continuidade dos deslocamentos no solo. Nesse contexto, a pesquisa teve por objetivo desenvolver um equipamento de cisalhamento torsional baseado no ring shear descrito por Bishop et al. (1971) para avaliar o comportamento do solo a grandes deformações. O equipamento projetado foi validado, preliminarmente, segundo os resultados já publicados na literatura. / Landslides, generally, are related with the mobilization of shear strength of one or more preexisting rupture surfaces. Thus, knowledge of the property that governs this behavior (residual shear strength) has extreme importance in the stability soils study. According to Skempton (1985), residual shear strength is the minimum constant strength attained at low shear rates, at large displacements. The residual shear strength parameters can be accomplished through ring shear tests, suitable for studying the mechanisms in the rupture, since it provides continuity of displacements in the soil. In this context, the research aimed to develop a device based on ring shear described by Bishop et al. (1971) to evaluate the soil behavior in large deformations. The equipment designed was validated, preliminarily, according to the results already published in the literature.

Page generated in 0.0619 seconds