• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1521
  • 602
  • 221
  • 185
  • 120
  • 66
  • 40
  • 37
  • 36
  • 36
  • 36
  • 36
  • 36
  • 32
  • 30
  • Tagged with
  • 3585
  • 721
  • 616
  • 457
  • 451
  • 436
  • 412
  • 361
  • 282
  • 263
  • 230
  • 230
  • 229
  • 217
  • 216
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
661

Biomechanics of the residual limb and prosthetic socket interface in below-knee amputees

Zhang, Ming January 1995 (has links)
No description available.
662

Hydroelastic instabilities of compliant panels

Cafolla, Gerard James January 1997 (has links)
No description available.
663

The Influence of Axial Load and Prestress on The Shear Strength of Web-shear Critical Reinforced Concrete Elements

Xie, Liping 28 September 2009 (has links)
Experimental research was conducted to investigate the influence of axial load and prestress on the shear strength of web-shear critical reinforced concrete elements. The ability of two design codes, the ACI code and the CSA code, to accurately predict the shear strength of web-shear critical reinforced concrete elements was investigated through two sets of experiments performed for this thesis, the panel tests and the beam tests. The experimental results indicated that the CSA code provided better predictions for the shear strength of web-shear critical reinforced concrete members subjected to combined axial force and shear force than the ACI code. A total of six panels, reinforced almost identically, were tested under different combinations of uni-axial stress and shear stress. In addition to the panel tests, a total of eleven I-shaped beams, with the same web thickness, were tested under different combinations of axial force and shear force. The parameters for these beams were the amount of longitudinal reinforcement, the amount of transverse reinforcement, and the thickness of the flanges. The beams were simply supported, but the loading geometry was specially designed to simulate the loading conditions in continuous beams near points of inflection. The experimental results from the panel tests and the beam tests followed a similar trend of variations. Both the inclined cracking strength and the ultimate shear strength were increased by compression and were reduced by tension. The specimens subjected to very high compression failed explosively without developing many cracks. The inclined cracking strength could be predicted with good accuracy if the influence of the co-existing compression on the cracking strength of the concrete and the non-uniform distribution of the stresses over the depth of the cross-section were considered. The strength predictions using the ACI code for these tests were neither accurate nor consistent. The ACI code was unconservative for members subjected to compression and was excessively conservative for members subjected to tension. In contrast, the strength predictions using the CSA code for these tests were generally conservative and consistent. The CSA code accurately predicted the response of specimens subjected to compression and was somewhat conservative in predicting the shear strength of specimens subjected to tension.
664

Physical Models of Shear Zones: on the Relationship between Material Properties and Shear Zone Geometry

Schrank, Christoph Eckart 23 February 2010 (has links)
I present physical shear-box experiments investigating the relationship between geometrical properties of shear zones and mechanical properties of deformed rocks. Experimental methodology is also examined critically and new materials for analogue modelling of shear localization are presented. First, I tested experimentally whether meaningful rheological information can be deduced from finite geometrical shear zone data. The results predict characteristic geometrical responses for certain end-member materials. However, it will be difficult to constrain such responses in the field. In the second part physical controls on deformation in the shear box are analysed for Newtonian and power-law fluids and an elastoviscoplastic strain-softening material. Since models always represent simplifications of the natural problem, it is essential to understand fully the physics of a given simulation. I show that displacement boundary conditions, model geometry, and rheology control shear zone geometry. Practical applications of the shear box for modelling natural shear localization and limitations of isothermal physical models with displacement boundary conditions in general are discussed. In the third part, new data on the rheology of highly-filled silicone polymers are introduced. Since dynamic similarity must be satisfied in analogue models to permit scaled, quantitative simulations of deformation processes, the choice of suitable rock analogues is critical for physical experiments. In particular, we address the problem of designing power-law fluids to model rocks deforming by dislocation creep. We found that highly-filled polymers have complex rheologies. Hence, such materials must be used with care in analogue modelling and only for certain experimental stress-strain rate conditions. Finally, I investigated whether fault network geometry and topography of brittle strike-slip faults are influenced by the degree of compaction of the host rock. Analogue shear experiments with loose and dense sand imply that the degree of sediment compaction may be a governing factor in the evolution of fault network structure and topography along strike-slip faults in sedimentary basins. Therefore, models of strike-slip faults should consider potential volume changes of deformed rocks.
665

Behaviour of buried pipes and bored tunnels in sand

Talby, Robert January 1997 (has links)
This thesis essentially reports an investigation of the behaviour of buried (0.12 to 0.25m diameter) single-walled PVC-U and vitrified clay pipes during installation in a uniform sand surround and when subjected to applied surface loading. An additional simple study of tail void displacements due to tunnelling in sand is also presented. Controlled laboratory tests were conducted in a glass-faced, steel-sided box. The buried pipes were installed perpendicular to the glass face and were subjected to static and cyclic loading, simulating increasing overburden stress and the passing of traffic over a shallow buried pipe respectively. The simulated shallow tunnel tests were also conducted perpendicular to the glass and involved withdrawal of the outer of two concentrically placed tubes. Photographs were taken of the sand particles and the buried structure in the plane of the cross section together with strain gauge readings on the pipe or tunnel wall throughout installation and loading/shield withdrawal. The resulting sand displacements are presented in the form of horizontal and vertical contour plots. Pipe deflections and volumetric and shear strain contours of the sand were also determined for the buried pipe tests. The shape of the deformed pipe and the imposed stress at the pipe springline were inferred from the pipe wall strains. During the PVC-U pipe tests, the deformation of the pipe caused the applied stress to be transferred to the sidefill via arching in the surrounding soil. This was associated with a reduction of applied stress reaching the pipe. Increasing the initial soil stiffness reduced the magnitude of the pipe and soil displacements and the stress carried by the pipe. Use of a vitrified clay pipe however, caused the soil surround to settle relative to the pipe. Soil shear strain contour plots are used to highlight the mechanisms of the transfer of applied stress onto, or away from, the buried pipes, and are related to the shape of the deformed pipe in the PVC-U pipe tests. The test data also allowed standard buried pipe design methods and installation procedures to be critically appraised. The soil movements recorded during the tunnel tests were shown to be similar to those recorded during the buried PVC-U pipe tests, indicating a similar soil loading transfer mechanism.
666

Scale model seismicity : a detailed study of deformation localisation from laboratory acoustic emission data

Graham, Caroline C. January 2010 (has links)
Acoustic emissions (AE) can provide information relating to the internal state of a deforming rock sample during laboratory testing and have been utilised to quantify damage progression for time-dependent failure modeling. However, the underlying physical mechanisms that produce AE in different materials and their evolution during the process of damage localisation are not fully understood, particularly in porous media. In order to investigate the sources of laboratory acoustic emissions, a moment tensor inversion was applied to data from triaxial compression experiments on Aue granite and Clashach sandstone. The moment tensor inversion was verified for granite, by comparison with results obtained using a more simplistic source analysis technique. In the non-porous Aue granite, AE sources exhibited a predominantly tensile behaviour in the early stages of AE activity. However, shear sources become dominant in the vicinity of the peak stress. In contrast, during deformation of the Clashach sandstone, which has a significant pre-existing porosity, AE sources are dominated by a collapse signature and generally involve a notable shear component. AE that have a predominantly shear mechanism are also a major contributor to the microscale deformation imaged by the technique, and dominate during shear localisation. A combination of correlation analysis and source analysis was used to elucidate the temporal and spatial evolution of the AE source mechanisms involved in the localisation process, as well as during a temporary hiatus in the progression to failure. The results support the concept that the cascade to failure requires the simultaneous involvement of a range of micromechanical behaviours to maintain the progression of localised damage, and eventual formation of a fault. Localisation of collapse mechanisms was not observed until the final approach to failure. Finally, AE sources produced during brittle deformation of the Clashach sandstone were characterised in detail and compared to microstructural observations representing the integrated effect of all times up to the end of the test, and including smaller structures that may have been formed insufficiently dynamically to produce AE. Equivalent focal mechanisms for these events are presented and the relative proportions of their volumetric and shear components considered. The results indicate that AE sources display a wide spectrum of micromechanical behaviour that is consistent with microstructural observations, indicating that AE mechanisms are representative of ongoing deformation processes within the sandstone. It is argued that moment tensor inversion of acoustic emissions is a powerful tool for elucidating the micromechanical evolution of damage, during the brittle deformation of rock.
667

One and two point micro-rheology of hard sphere suspensions

Harrison, Andrew William January 2011 (has links)
The material that is covered in this thesis concerns the calibration and application of a set of optical tweezers to be used for one- and two-point micro-rheology experiments on hard sphere colloidal suspensions. The colloidal suspensions that were used in this study were all quasi-monodisperse density- and refractive index-matched PMMA particles that had a radii, a = 0:90 ± 0:05μm or a = 0:86 ± 0:07 for one-point microrheology experiments and radii a = 0:90 ± 0:05μm or a = 0:133 ± 0:010μm for the two-point micro-rheology experiments. By collecting the forward scattered light from a single optically trapped particle the particle's displacements in time were used to determine passive microviscosity, η(Passive) μ , for colloidal suspension in the range of 0:10 < Ø < 0:57 and comparison with literature data has been made and agreement found. Actively dragging an optically trapped particle through suspensions with volume fractions of the same range has yielded the active microviscosities, η(Active) μ , for both high and low shear regimes, displaying shear thinning behaviour. Comparison to literature data has been made and agreement found as well. Collecting the forward scattered light from two optically trapped particles has been used to determine the cross-correlated motion of the two particles in bare solvent and in suspensions with volume fraction Ø = 0:02. The friction coefficients ξ1;1 and ξ1;2 were extracted from the cross-correlated motion of the particles and agreement was found with theoretical predictions for bare solvent only. The suspensions with volume fraction Ø = 0:02 were found to have a friction coefficient ξ1;1 that was greater than what theory predicted with the suspension with bath particles a = 0:90 ± 0:05μm had the greater magnitude. The magnitude ξ1;2 was found to decrease for the suspension with bath particles of radius a = 0:133 ± 0:010μm and to increase for the suspension with bath particles a = 0:90 ± 0:05μm.
668

Prediction of premature failure load in FRP or steel plated RC beams

Aliamiri, Sara January 2013 (has links)
No description available.
669

JWST science instrument pupil alignment measurements

Kubalak, Dave, Sullivan, Joe, Ohl, Ray, Antonille, Scott, Beaton, Alexander, Coulter, Phillip, Hartig, George, Kelly, Doug, Lee, David, Maszkiewicz, Michael, Schweiger, Paul, Telfer, Randal, Te Plate, Maurice, Wells, Martyn 27 September 2016 (has links)
NASA's James Webb Space Telescope (JWST) is a 6.5m diameter, segmented, deployable telescope for cryogenic IR space astronomy (similar to 40K). The JWST Observatory architecture includes the Optical Telescope Element (OTE) and the Integrated Science Instrument Module (ISIM) element that contains four science instruments (SI), including a guider. OSIM is a full field, cryogenic, optical simulator of the JWST OTE. It is the "Master Tool" for verifying the cryogenic alignment and optical performance of ISIM by providing simulated point source/star images to each of the four Science Instruments in ISIM. Included in OSIM is a Pupil Imaging Module (PIM) - a large format CCD used for measuring pupil alignment. Located at a virtual stop location within OSIM, the PIM records superimposed shadow images of pupil alignment reference (PAR) targets located in the OSIM and SI pupils. The OSIM Pupil Imaging Module was described by Brent Bos, et al, at SPIE in 2011 prior to ISIM testing. We have recently completed the third and final ISIM cryogenic performance verification test before ISIM was integrated with the OTE. In this paper, we describe PIM implementation, performance, and measurement results.
670

Asymptotic and numerical solutions of trapped Rossby waves in high-latitude shear flows with boundaries

Harlander, Uwe 28 November 2016 (has links) (PDF)
We consider the amplitudes of coastally trapped Rossby waves in a high-latitude shear flow on a modified ß-plane, where also the effect of the sphericity of the earth (c5-effect) is taken into account. We present a particular analytical solution and also asymptotic and numerical solutions. We find that the asymptotic WKB solutions are accurate compared to the numerical results. We show that the o-effect is most important for shorter waves and leads to an enhanced selection of trapped Rossby wave modes. / Wir betrachten die Amplituden von küstennah gefangenen Rossby-Wellen in einer Scherströmung hoher Breiten. Die Rechnungen werden auf einer modifizierten ß-Ebene durchgeführt, die auch die Spherizität der Erde berücksichtigt (o-Effekt). Wir zeigen eine spezielle analytische Lösung und auch asymptotische und numerische Lösungen. Die asymptotischen WKB-Lösungen erweisen sich als genau, verglichen mit den numerischen Resultaten. Der o-Effekt wirkt sich a stärksten bei den sehr langen und den kurzen Wellen aus und führt zu einer stärkeren Selektion von Moden gefangener Rossby-Wellen.

Page generated in 0.0458 seconds