• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 6
  • 3
  • 3
  • 2
  • Tagged with
  • 43
  • 43
  • 12
  • 11
  • 8
  • 7
  • 7
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Examining the Mechanics Responsible for Strain Delocalization in Metallic Glass Matrix Composites

Messick, Casey Owen 01 December 2018 (has links)
Metallic glass matrix composites (MGMCs) have been developed to improve upon the ductility of monolithic metallic glass. These composites utilize a secondary crystalline phase that is grown into an amorphous matrix as isolated dendritic trees. This work seeks to understand the mechanisms underlying strain delocalization in MGMCs in order to better direct efforts for continual progress in this class of material. A mesoscale modelling technique based on shear transformation zone (STZ) dynamics is used to do so. STZ dynamics is a coarse grained technique that can provide insight into the microscopic processes that control macroscopic behavior, but which can be difficult to resolve experimentally. A combined simulated-experimental approach to extract the individual material properties of the amorphous and crystalline phases is presented. Numerically, STZ dynamics is used to simulate nanoindentation of the crystalline and amorphous phases respectively. The indented phases are modelled as discs with varying thickness embedded in the other phase. Indentation depths are held constant. Experimentally, nanoindentation is carried out on DH2 and DH3 MGMC composites under varying loads at Stony Brook University (SBU). Specimens are cross-sectioned and using scanning electron microscopy, indentation sites are chosen so that the indenter targets individual phases. For both experimental and simulated nanoindentation, hardness and modulus values are calculated from the load-displacement data. The experimental and simulated values are normalized and compared. Good agreement between results suggests accurate characterization of the individual phases at low loads on both DH2 and DH3 composites. Length scales at which indentations begin sampling outside the intended phase are presented. Work is then presented on simulated uniaxial tensile loading of MGMCs. Dendritic microstructural sizes are varied and shear banding characteristics are measured. A competition of shear band nucleation and propagation rates that previously had only been seen in monolithic metallic glasses under certain loading conditions is found to exist in MGMCs as well. The stages of shear banding in MGMCs are presented and the influence of dendrites on shear band nucleation and propagation are discussed. It is proposed that the introduction of dendrites into the amorphous matrix work to inhibit shear band propagation and encourage shear band nucleation to delocalize strain in MGMCs. In particular, it was found that smaller dendrite sizes and spacings are better at doing so.
32

DEFORMATION AND DAMAGE MECHANISMS IN SELECTED 2000 SERIES ALUMINUM ALLOYS UNDER BOTH QUASI-STATIC AND DYNAMIC IMPACT LOADING CONDITIONS

2015 August 1900 (has links)
In recent times, application of aluminum alloys is favored in the transportation sectors such as the aerospace and automobile industries where reduced fuel consumption and greenhouse gas emission are major priorities. In these applications, these alloys can be exposed to dynamic shock loading conditions as in the case of car crash and birds’ collision during aircraft’s take-off or landing. This study therefore focused on the deformation and damage mechanisms in AA 2017, AA 2024 and AA 2624 aluminum alloys under both quasi-static and dynamic impact loading conditions. Cylindrical specimens of the selected aluminum alloys were investigated under both quasi-static loading at 3.2 x10-3 s-1 using an Instron R5500 mechanical testing machine and dynamic impact loading using the split Hopkinson pressure bar at strain rates ranging between 2000 and 8000 s-1. The effects of strain rate and temper condition on the microstructural evolution in the alloys during mechanical loading were studied. The electron backscatter diffraction (EBSD) technique was used to investigate the texture of the naturally-aged AA 2017 and AA 2624 alloys before and after dynamic shock loading. The contributions of the major alloying elements such as copper, magnesium and silicon to the microstructural evolution and deformation behavior of the alloys under the dynamic shock loading condition were also studied using the energy dispersive spectroscopy (EDS) technique. Results showed that the morphology and atomic distribution of particles in the investigated alloys are functions of the temper condition. The hardness of all the three alloys was higher in the age-hardened conditions than the annealed ones. Although deformation of the alloy under quasi-static compressive loading was dominated by strain hardening, flow softening leading to strain localization and formation of shear bands occurred once certain critical strain values were reached. Under both quasi-static and dynamic loading, the alloys with low Cu:Mg ratio (AA 2024 and AA 2624) showed higher mechanical strength in age-hardened condition than that with high Cu:Mg ratio (AA 2017). All the alloys in the annealed condition exhibited an enhanced plasticity and formability. Intense strain localization leading to formation of adiabatic shear bands (ASBs) was the principal contributor to failure in the alloys under dynamic impact loading. Both deformed and transformed bands were observed, with cracking occurring mainly along the transformed shear bands. The tendency for formation of adiabatic shear bands is observed to be a function of the alloy composition, temper condition, strain, strain rate and strain hardening rate. In the natural aging condition, AA 2024 showed the highest susceptibility to formation of ASBs followed by AA 2624 and AA 2017 in that order. On the other hand, AA 2024 has the least susceptibility in the artificially-aged condition. Occurrence of bifurcation of transformed bands in dynamic impacted specimens is dependent on temper condition, strain and strain rate. The mechanism of fracture of the precipitation hardened samples is typical of ductile fracture occurring sequentially by nucleation, growth, and coalescence of micro-voids processes within transformed band. Elongated grains were observed to arrest propagating shear band depending on the angle the band makes with elongated grains. The higher the angle of inclination of a shear band to the grain on its path, the higher the tendency of the grain to stop its propagation. Texture analysis of the impacted specimens of AA 2017-T451 and AA 2624-T351 shows that the former has a higher tendency for the evolution of ultra-fine DRX grains within the transformed shear band. High strain rate led to the development of CD//<111> orientations at the expense of CD//<110> orientations. Schmid factor calculations performed on few different orientations in the starting microstructure shows that CD//<110> is less susceptible to slip deformation and consequently underwent rotation to CD//<111>.
33

Prediction of the formation of adiabatic shear bands in high strength low alloy 4340 steel through analysis of grains and grain deformation

Polyzois, Ioannis 02 December 2014 (has links)
High strain rate plastic deformation of metals results in the formation of localized zones of severe shear strain known as adiabatic shear bands (ASBs), which are a precursor to shear failure. The formation of ASBs in a high-strength low alloy steel, namely AISI 4340, was examined based on prior heat treatments (using different austenization and tempering temperatures), testing temperatures, and impact strain rates in order to map out grain size and grain deformation behaviour during the formation of ASBs. In the current experimental investigation, ASB formation was shown to be a microstructural phenomenon which depends on microstructural properties such as grain size, shape, orientation, and distribution of phases and hard particles—all controlled by the heat treatment process. Each grain is unique and its material properties are heterogeneous (based on its size, shape, and the complexity of the microstructure within the grain). Using measurements of grain size at various heat treatments as well as dynamic stress-strain data, a finite element model was developed using Matlab and explicit dynamic software LSDYNA to simulate the microstructural deformation of grains during the formation of ASBs. The model simulates the geometrical grain microstructure of steel in 2D using the Voronoi Tessellation algorithm and takes into account grain size, shape, orientation, and microstructural material property inhomogeneity between the grains and grain boundaries. The model takes advantage of the Smooth Particle Hydrodynamics (SPH) meshless method to simulate highly localized deformation as well as the Johnson-Cook Plasticity material model for defining the behavior of the steel at various heat treatments under high strain rate deformation.The Grain Model provides a superior representation of the kinematics of ASB formation on the microstructural level, based on grain size, shape and orientation. It is able to simulate the microstructural mechanism of ASB formation and grain refinement in AISI 4340 steel, more accurately and realistically than traditional macroscopic models, for a wide range of heat treatment and testing conditions.
34

Étude des phénomènes thermiques associés à des sollicitations mécaniques à grande vitesse / Study of thermal phenomena associated with high speed mechanical loads

Pawelko, Romain 11 July 2018 (has links)
Lorsqu'un matériau est soumis à une sollicitation mécanique rapide, une partie de l'énergie mécanique est convertie en énergie thermique et une autre partie est stockée dans le matériau (energy of cold work). Dans le cas où la vitesse de déformation est très élevée, il peut se produire un phénomène de localisation accompagné d'une élévation importante de la température. Celle-ci peut atteindre localement des valeurs proches de la température de fusion du matériau. Ce phénomène appelé cisaillement adiabatique possède de nombreuses applications : usinage à grande vitesse, balistique, projection cold-spray... L'énergie thermique émise est une valeur observable, elle est utilisée depuis quelques années pour essayer de comprendre les mécanismes d'endommagement. Nous avons mis au point un dispositif capable de mesurer la température dans les bandes de cisaillement. L'utilisation combinée d'une caméra à balayage de fente fonctionnant aux courtes longueurs d'ondes et d'une barrette de 32 détecteurs fonctionnant dans l'infrarouge nous permet de limiter les incertitudes. Un programme d'inversion a été développé afin de caractériser le terme source thermique. Des mesures de température ont aussi été effectuées sur des matériaux énergétiques composites afin de mieux comprendre les mécanismes de réaction. / When a material is subjected to a mechanical loading, part of the energy will be transformed into thermal energy and another part will be stored inside the material énergy of cold work). In the case of a dynamic loading, a localization phenomenon may occur accompanied by a significant rise in temperature which can locally reach values close to the melting point of the material. This phenomenon called adiabatic shear has many applications: high-speed machining, ballistics, cold-spray , blanking... The emitted thermal energy is an observable value which has been used in the past years in order to better understand the failure mechanisms. We have developed a device able to measure the temperature in the shear bands. The combined use of a short-wavelength streak camera and a 32- infrared detectors array allows us to limit uncertainties. An inversion program has also been developed to identify the thermal source term. Temperature measurements were also performed on composite energetic materials to better understand the reaction mechanisms.
35

Modelagem física de condutos enterrados sujeitos a perda de apoio ou elevação localizada / Physical modeling of buried pipes subjected to localized loss of support or elevation

Yuri Daniel Jatobá Costa 24 May 2005 (has links)
Este trabalho apresenta um estudo experimental sobre o comportamento de dutos enterrados sofrendo perda de apoio ou elevação em uma determinada região ao longo do comprimento. Foram realizados ensaios com modelos físicos compostos por um maciço de areia pura contendo um tubo repousando sobre um alçapão localizado no centro do vão. A pesquisa envolveu dois programas experimentais distintos. O primeiro foi desenvolvido na Escola de Engenharia de São Carlos/USP e contou com o desenvolvimento e a construção de um equipamento de ensaios possuindo um sistema de alçapão. Os modelos eram dotados de instrumental capaz de medir as deflexões e as deformações específicas ao longo do duto, além das tensões totais no maciço de solo circundante e na base do equipamento. O segundo programa experimental foi conduzido na Universidade do Colorado em Boulder, EUA, e envolveu ensaios em centrífuga. Essa fase da pesquisa teve por finalidade realizar uma investigação visual dos mecanismos de ruptura do sistema composto pelo solo e pelo duto sujeito à perda de apoio. Ambas as etapas do trabalho contaram com a execução de testes com modelos sem tubo. Os ensaios realizados revelaram aspectos importantes do problema investigado. A movimentação ativa ou passiva do alçapão exerceu uma forte influência na redistribuição das tensões no maciço de solo exterior à estrutura, a qual abrangeu distâncias horizontais superiores a 5 B e verticais superiores a 4 B. Após a perda de apoio ou a elevação, o topo, a base e as demais partes do conduto assumiram perfis de deflexão distintos ao longo do comprimento, os quais foram consideravelmente influenciados pela densidade relativa do solo e pela sobrecarga aplicada. A movimentação ativa do alçapão revelou ainda padrões de ruptura incluindo localizações de deformação propagando-se para a região do maciço de solo fora do alçapão / This thesis presents an experimental study on the behavior of buried pipes undergoing a loss of support or elevation in a localized region along its length. Tests with physical models comprising a pure dry sand and a tube resting on a rigid trapdoor base located at the center of its length were performed. The research included two distinct testing programs. The first testing program was carried out at the School of Engineering of Sao Carlos/USP, and included the construction of a laboratory facility containing a trapdoor system. The models were equipped with devices for measuring deflections and strains in the pipe, and total stresses in the soil mass and in the lower boundary of the model. The second phase of this investigation was conducted at the University of Colorado at Boulder, USA, and involved centrifuge testing. The main goal of this part of the research was to assess the failure mechanisms that take place when the pipe experiences loss of support. Models without the pipe were also tested in both phases. Important aspects of the soil-structure interaction were verified with the testing programs carried out in this study. A strong influence on the stress redistribution within the soil mass in the vicinity of the structure was achieved after the active or passive conditions were established, encompassing horizontal distances greater than 5 B and vertical distances greater than 4 B. The crown, the base, and the other parts of the pipe assumed distinct deflection profiles after the loss of support or elevation, which were strongly influenced by the relative density of the surrounding soil and by the surficial applied surcharge. The imposed downward boundary movement included the formation of shear bands initiating at the edge of the void and propagating towards the soil mass in the vicinity of the trapdoor
36

Impact Resistant Glassy Polymers: Pre-Stress And Mode Ii Fracture

Archer, Jared Steven 01 February 2013 (has links)
Model glassy polymers, polymethyl methacrylate (PMMA) and polycarbonate (PC) are used to experimentally probe several aspects of polymer fracture. In Chapter 1, the method of pre-stress is employed as a means of improving the fracture properites of brittle PMMA. Samples are tested under equi-biaxial compression, simple shear and a combination of biaxial compression and shear. Equi-biaxial compression is shown to increase the threshold stress level for projectile penetration whereas shear pre-stress has a large effect on the overall energy absorbed during an impact. There is also an apparent interaction observed between compression and shear to dramatically increase the threshold stress. Pre-stressed laminates of PMMA and PC show an increase in damage area because of the unique formation of a secondary cone. In Chapter 2, the effect of stress state on stress relaxation in PMMA and PC is investigated. Direct comparisons are made between uniaxial and biaxial loading conditions. The experimental methods used highlight the effect of hydrostatic stress on the relaxation process. The data shows an increase in relaxation time and increase in the breadth of the relaxation spectrum with increases in hydrostatic stress. This suggests that the stress state can have a significant effect on the useful lifetime of pre-stressed articles. In Chapter 3, Mode I and II fracture studies are performed from quasi-static to low velocity impact rates on PMMA and PC. Mode II testing utilizes an angled double-edge notched specimen loaded in compression. The shear banding response of PMMA is shown to be highly sensitive to rate, with diffuse shear bands forming at low rates and sharp distinct shear bands forming at high rates. As the rate increases, shear deformation becomes more localized to the point where Mode II fracture occurs. PC is much less rate dependent and stable shear band propagation is observed over the range of rates studied with lesser amounts of localization. A new theory is formulated relating orientation in a shear band to intrinsic material properties obtained from true-stress true-strain tests. In a qualitative sense the theory predicts the high rate sensitivity of PMMA. A kinematic limit for orientation within a shear band is also derived based on entanglement network parameters. Mode II fracture in PMMA is shown to occur at this kinematic limit. For the case of PC, the maximum impact rates were not high enough to reach the kinematic limit. In Chapter 4, the deformation response, as observed in a shear band is interpreted through the characterization of the "intrinsic material properties" obtained from true stress - true strain 8compression tests. The relatively high rate sensitivity of PMMA deformed at room temperature is related to the proximity of the beta transition to the test temperature. This is also shown in corollary experiments on PC where deformation near the beta transition is accompanied by an increase in rate sensitivity. Physical aging results in a more narrow alpha transition and is shown to increase strain localization and decrease rate sensitivity at low strain rates.
37

The Portevin-Le Chatelier Effect and Shear Band Formation in AA5754 Aluminum Alloy

Halim, Herdawandi 09 1900 (has links)
<p> The use of AA 5754 Al-Mg alloy for automotive applications is limited by its rapid shear failure process, due to shear banding. This failure mechanism is further complicated by the presence of inhomogeneous plastic deformation, so-called Portevin-Le Chatelier (PLC) effect, during deformation. Therefore, the purpose of this study was primarily to investigate the impact of Portevin-Le Chatelier (PLC) banding towards shear banding in this commercial alloy. The second objective was to study the PLC banding as a function of prior deformation under positive strain rate sensitivity condition.</p> <p> The experimental work involved pre-straining experiments coupled with a non-contact strain measurement technique. Pre-straining experiments were carried out by deforming the sample at 223 K, at which the PLC effect is significantly suppressed, up to a prescribed amount of true strain prior to room temperature testing. A non-contact strain measurement technique, based on digital image correlation (DIC), was utilized in order to observe PLC band behavior during tensile tests at room temperature and subsequently to measure the amount of plastic strain carried within the band.</p> <p> The results showed the appearance of random nucleation deformation bands, associated with type B PLC banding, with short distance propagation during constant strain rate tensile test at room temperature. A change in the nature of PLC banding, marked by distinct band propagation, was observed once a critical amount of pre-strain is given. However, there is no evidence of a relationship between two existing phenomena, PLC banding and shear banding, in this alloy.</p> / Thesis / Master of Applied Science (MASc)
38

Constitutive models and finite elements for plasticity in generalised continuum theories

Gulib, Fahad January 2018 (has links)
The mechanical behaviour of geomaterials (e.g. soils, rocks and concrete) under plastic deformation is highly complex due to that fact that they are granular materials consisting of discrete non-uniform particles. Failure of geomaterials is often related to localisation of deformation (strain-localisation) with excessive shearing inside the localised zones. The microstructure of the material then dominates the material behaviour in the localised zones. The formation of the localised zone (shear band) during plastic deformation decreases the material strength (softening) significantly and initiates the failure of the material. There are two main approaches to the numerical modelling of localisation of deformation in geomaterials; discrete and continuum. The discrete approach can provide a more realistic material description. However, in the discrete approach, the modelling of all particles is complicated and computationally very expensive for a large number of particles. On the other hand, the continuum approach is more flexible, avoids modelling the interaction of individual particles and is computationally much cheaper. However, classical continuum plasticity models fail to predict the localisation of deformation accurately due to loss of ellipticity of the governing equations, and spurious mesh-dependent results are obtained in the plastic regime. Generalised plasticity models are proposed to overcome the difficulties encountered by classical plasticity models, by relaxing the local assumptions and taking into account the microstructure-related length scale into the models. Among generalised plasticity models, Cosserat (micropolar) and stain-gradient models have shown significant usefulness in modelling localisation of deformation in granular materials in the last few decades. Currently, several elastoplastic models are proposed based on Cosserat and strain-gradient theories in the literature. The individual formulation of the models has been examined almost always in isolation and are paired with specific materials in a mostly arbitrary fashion. Therefore, there is a lack of comparative studies between these models both at the theory level and in their numerical behaviour, which hinders the use of these models in practical applications. This research aims to enable broader adoption of generalised plasticity models in practical applications by providing both the necessary theoretical basis and appropriate numerical tools. A detailed comparison of some Cosserat and strain-gradient plasticity models is provided by highlighting their similarities and differences at the theory level. Two new Cosserat elastoplastic models are proposed based on von Mises and Drucker- Prager type yield function. The finite element formulations of Cosserat and strain-gradient models are presented and compared to better understand their advantages and disadvantages regarding numerical implementation and computational cost. The finite elements and material models are implemented into the finite element program ABAQUS using the user element subroutine (UEL) and an embedded user material subroutine (UMAT) respectively. Cosserat finite elements are implemented with different Cosserat elastoplastic models. The numerical results show how the Cosserat elements behaviour in the plastic regime depends on the models, interpolation of displacement and rotation and the integration scheme. The effect of Cosserat parameters and specific formulations on the numerical results based on the biaxial test is discussed. Two new mixed-type finite elements as well as existing ones (C1, mixed-type and penalty formulation), are implemented with different strain-gradient plasticity models to determine the numerical behaviour of the elements in the plastic regime. A detailed comparison of the numerical results of Cosserat and strain-gradient elastoplastic models is provided considering specific strain-localisation problems. Finally, some example problems are simulated with both the Cosserat and strain-gradient models to identify their applicability.
39

Geomaterial gradation influences on interface shear behavior

Fuggle, Andrew Richard 04 April 2011 (has links)
Particulate materials are ubiquitous in the natural environment and have served throughout human history as one of the basic materials for developing civilizations. In terms of human activity, the handling of particulate materials consumes approximately 10% of all the energy produced on earth. Advances in the study and understanding of particulate materials can thus be expected to have a major impact on society. Geotechnical engineers have a long history of studying particulate materials since the fundamental building blocks of the profession include sands, silts, clays, gravels and ores, all of which are in one form or another particulates. The interface between particulates and other engineered materials is very important in determining the overall behavior of many geotechnical systems. Laboratory experimental studies into interface shear behavior has until now, been largely confined to systems involving uniformly graded sands comprised of a single particle size. This study addresses these potential shortcomings by investigating the behavior of binary particle mixtures in contact with surfaces. The binary nature of the mixtures gives rise to a changing fabric state which in turn can affect the shear strength of the mixture. Accordingly, packing limit states and the shear strength of binary mixtures were investigated across a range of mixtures, varying in particle size ratio and the proportion of fine particles to provide a reference. Binary mixtures in contact with smooth surfaces were investigated from both a global shear response and a contact mechanics perspective. A model was developed that allowed for the prediction of an interface friction coefficient based on fundamental material properties, particle and mixture parameters. Surface roughness changes as a result of shearing were also examined. The interface shear behavior with rough interfaces was examined in the context of the relative roughness between particles and surface features. The interpretation of traditional measures of relative roughness suffer from the need for a definitive average particle size, which is ambiguous in the case of non-uniform mixtures. Measures of an applicable average particle size for binary mixtures were evaluated.
40

Etude numérique de la localisation des déformations en géotechnique dans le cadre de la théorie micropolaire / Numerical investigations of the strain localization in geotechnical engineering within the framework of micropolar theory

Liu, Jiangxin 22 March 2018 (has links)
La plupart des ruptures des structures géotechniques sont associées aux phénomènes de localisation des déformations, qui s'accompagnent toujours d'un adoucissement de la résistance. De nombreuses observations expérimentales montrent que d’importants réarrangements et rotations de particules se produisent à l'intérieur des bandes de cisaillement. Cette thèse vise à étudier numériquement les phénomènes de localisation des déformations dans les matériaux granulaires. Considérant les problèmes de dépendance au maillage dans l'analyse par éléments finis dans le cadre de la modélisation continue classique, un modèle de sable basé sur l' état critique a été formulé dans le cadre de la théorie micropolaire. Un code d'éléments finis pour les problèmes bidimensionnels a été développé dans ce cadre. Ensuite, les simulations d'essais bi-axiaux ont permis d’étudier en profondeur les caractéristiques des bandes de cisaillement en termes d'apparition,d'épaisseur, d'orientation, etc. Dans le même temps, l'efficacité de l'approche micropolaire, en tant que technique de régularisation, a été discutée. L'analyse de l'instabilité dans un continuum micropolaire basé sur le travail du second-ordre a également été effectuée. Enfin,pour une application plus large dans la simulation des défaillances en ingénierie géotechnique, le modèle 2D a été étendu à un modèle 3D. Sur la base de l'étude, les modèles 2D et 3D ont démontré leurs capacités de régularisation pour éviter les problèmes de dépendance au maillage et reproduire raisonnablement les bandes de cisaillement dans les géostructures. / Most of the progressive failures of geotechnical structures are associated with the strain localization phenomenon, which is generally accompanied by strength softening. Many experimental observationsshow that significant rear rangements and rotations of particles occur inside the shear bands. The aim of this thesis is to investigate numerically the strain localization phenomena of granular materials. Considering the mesh dependency problems in finite element analysis caused by strains oftening within the classical continuum framework, a sand model based on critical-state has been formulated within the framework of the micropolar theory, taking into account the micro rotations, and implemented into a finite element code for two dimensional problems. Then, the simulations of the shearband in biaxial tests are comprehensively studied in terms of onset, thickness, orientation, etc. At the same time, the efficiency of the micropolar approach, as a regularization technique, is discussed. This is followed by an instability analysis using the second-order work based on the micropolar continuum theory. Finally, for a wider application in simulating failures in geotechnical engineering, the 2D model has been extended to 3D model. Based on the entire study, both the 2D and 3Dmodel demonstrate obvious regularization ability to relieve the mesh dependency problems and to reproduce reasonably the shear bands in geostructures.

Page generated in 0.0369 seconds