• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Diversity and Dynamics of Algal Viruses in the Bay of Quinte

Rozon, Robin 17 July 2013 (has links)
To initiate algal virus research in the Bay of Quinte, three stations were sampled biweekly throughout 2011. By targeting algal virus DNA polymerase, major capsid protein genes (MCP), and a Microcystis aeruginosa cyanophage (Ma-LMM01) tail sheath protein gene, PCR amplification revealed diverse and unique Phycodnaviruses (viruses of eukaryotic algae) and cyanophage. When analysed statistically, patterns of virus abundance suggested that the seasonality of any one virus cannot be generalised to predict that of other viruses, even among closely related viruses. This study also demonstrated a strong relationship between algal virus abundance and host biomass. It was found that despite the apparent heterogeneity of virus abundance across the Bay, virus abundance patterns clustered by sampling date and geographic location. By providing evidence for diverse algal viruses with complex seasonality, this work highlights significant gaps in the current understanding of Bay of Quinte phytoplankton ecology.
2

Diversity and Dynamics of Algal Viruses in the Bay of Quinte

Rozon, Robin 17 July 2013 (has links)
To initiate algal virus research in the Bay of Quinte, three stations were sampled biweekly throughout 2011. By targeting algal virus DNA polymerase, major capsid protein genes (MCP), and a Microcystis aeruginosa cyanophage (Ma-LMM01) tail sheath protein gene, PCR amplification revealed diverse and unique Phycodnaviruses (viruses of eukaryotic algae) and cyanophage. When analysed statistically, patterns of virus abundance suggested that the seasonality of any one virus cannot be generalised to predict that of other viruses, even among closely related viruses. This study also demonstrated a strong relationship between algal virus abundance and host biomass. It was found that despite the apparent heterogeneity of virus abundance across the Bay, virus abundance patterns clustered by sampling date and geographic location. By providing evidence for diverse algal viruses with complex seasonality, this work highlights significant gaps in the current understanding of Bay of Quinte phytoplankton ecology.

Page generated in 0.0612 seconds