• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 25
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 43
  • 43
  • 33
  • 25
  • 14
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Výroba součásti "KRYT" plošným tvářením / Production single parts "COVER" from sheet metal

Vítek, Roman January 2010 (has links)
The Master’s thesis written in the frame of studies branch Manufacturing Technology (2303T002) is submitting design of technology production of sheet metal cover. The part is made of sheet metal 1,5 mm thick. The material for the part is HC260LA (ZStE260). There are no special mechanical or dimensional accuracy demands for the part. According to production run (5 000 pcs. per year for 5 years), design complexity and machine accessories of submitter was proposed manufacturing the part by drawing technology with finish laser cutting. Forming tool is designed according with press Erfurt PKZZ 315. Thesis includes economical evaluation of elaborated technology with other variants of production.
42

Jämförelse av material i presstativ / Steel grade evaluation for press frame

Hamngren, Philip January 2023 (has links)
Detta projekt bestod i att undersöka konstruktionsstålen S235JR och S355JR och dess skillnader i vikt, pris, hållfasthet och utmattning i ett presstativ, för att sedan kunna utföra en FEM-analys och utmattningsberäkning utifrån givna krav och begränsningar. Med detta som underlag genomfördes en designoptimering vid ett materialbyte från S355JR till S235JR för att bibehålla ett likvärdigt antal utmattningscykler för att kompensera för materialets lägre sträck- och brottgräns. Utifrån detta genomfördes en priskalkyl där materialens olika prissättningar togs i beaktning, såväl som ökningar i dimensioner som designoptimeringen medförde. Med detta som bakgrund kunde en optimering av materialval presenteras. / This project consisted of investigating the structural steels S235JR and S355JR and their differences in weight, price, mechanical strength and fatigue in a press frame, in order to perform a Finite Element Analysis and fatigue calculation based on given requirements and constraints. With this as a foundation, a design optimization was carried out when changing the material from S355JR to S235JR, in order to maintain an equivalent number of fatigue cycles to compensate for S235JR:s lower yield and tensile strength. Furthermore, a price calculation was carried out where the difference in pricing of the materials was considered, as well as the increases in dimensions that the design optimization entailed. Based on this, an optimization of the material selection could be presented.
43

The Influence of Fibre Processing and Treatments on Hemp Fibre/Epoxy and Hemp Fibre/PLA Composites

Islam, Mohammad Saiful January 2008 (has links)
In recent years, due to growing environmental awareness, considerable attention has been given to the development and production of natural fibre reinforced polymer (both thermoset and thermoplastic) composites. The main objective of this study was to reinforce epoxy and polylactic acid (PLA) with hemp fibre to produce improved composites by optimising the fibre treatment methods, composite processing methods, and fibre/matrix interfacial bonding. An investigation was conducted to obtain a suitable fibre alkali treatment method to: (i) remove non-cellulosic fibre components such as lignin (sensitive to ultra violet (UV) radiation) and hemicelluloses (sensitive to moisture) to improve long term composites stability (ii) roughen fibre surface to obtain mechanical interlocking with matrices (iii)expose cellulose hydroxyl groups to obtain hydrogen and covalent bonding with matrices (iv) separate the fibres from their fibre bundles to make the fibre surface available for bonding with matrices (v) retain tensile strength by keeping fibre damage to a minimum level and (vi) increase crystalline cellulose by better packing of cellulose chains to enhance the thermal stability of the fibres. An empirical model was developed for fibre tensile strength (TS) obtained with different treatment conditions (different sodium hydroxide (NaOH) and sodium sulphite (Na2SO3) concentrations, treatment temperatures, and digestion times) by a partial factorial design. Upon analysis of the alkali fibre treatments by single fibre tensile testing (SFTT), scanning electron microscopy (SEM), zeta potential measurements, differential thermal analysis/thermogravimetric analysis (DTA/TGA), wide angle X-ray diffraction (WAXRD), lignin analysis and Fourier transform infrared (FTIR) spectroscopy, a treatment consisting of 5 wt% NaOH and 2 wt% Na2SO3 concentrations, with a treatment temperature of 120oC and a digestion time of 60 minutes, was found to give the best combination of the required properties. This alkali treatment produced fibres with an average TS and Young's modulus (YM) of 463 MPa and 33 GPa respectively. The fibres obtained with the optimised alkali treatment were further treated with acetic anhydride and phenyltrimethoxy silane. However, acetylated and silane treated fibres were not found to give overall performance improvement. Cure kinetics of the neat epoxy (NE) and 40 wt% untreated fibre/epoxy (UTFE) composites were studied and it was found that the addition of fibres into epoxy resin increased the reaction rate and decreased the curing time. An increase in the nucleophilic activity of the amine groups in the presence of fibres is believed to have increased the reaction rate of the fibre/epoxy resin system and hence reduced the activation energies compared to NE. The highest interfacial shear strength (IFSS) value for alkali treated fibre/epoxy (ATFE) samples was 5.2 MPa which was larger than the highest value of 2.7 MPa for UTFE samples supporting that there was a stronger interface between alkali treated fibre and epoxy resin. The best fibre/epoxy bonding was found for an epoxy to curing agent ratio of 1:1 (E1C1) followed by epoxy to curing agent ratios of 1:1.2 (E1C1.2), 1: 0.8 (E1C0.8), and finally for 1:0.6 (E1C0.6). Long and short fibre reinforced epoxy composites were produced with various processing conditions using vacuum bag and compression moulding. A 65 wt% untreated long fibre/epoxy (UTLFE) composite produced by compression moulding at 70oC with a TS of 165 MPa, YM of 17 GPa, flexural strength of 180 MPa, flexural modulus of 10.1 GPa, impact energy (IE) of 14.5 kJ/m2, and fracture toughness (KIc) of 5 MPa.m1/2 was found to be the best in contrast to the trend of increased IFSS for ATFE samples. This is considered to be due to stress concentration as a result of increased fibre/fibre contact with the increased fibre content in the ATFE composites compared to the UTFE composites. Hygrothermal ageing of 65 wt% untreated and alkali treated long and short fibre/epoxy composites (produced by curing at 70oC) showed that long fibre/epoxy composites were more resistant than short fibre/epoxy composites and ATFE composites were more resistant than UTFE composites towards hygrothermal ageing environments as revealed from diffusion coefficients and tensile, flexural, impact, fracture toughness, SEM, TGA, and WAXRD test results. Accelerated ageing of 65 wt% UTLFE and alkali treated long fibre/epoxy (ATLFE) composites (produced by curing at 70oC) showed that ATLFE composites were more resistant than UTLFE composites towards hygrothermal ageing environments as revealed from tensile, flexural, impact, KIc, SEM, TGA, WAXRD, FTIR test results. IFSS obtained with untreated fibre/PLA (UFPLA) and alkali treated fibre/PLA (ATPLA) samples showed that ATPLA samples had greater IFSS than that of UFPLA samples. The increase in the formation of hydrogen bonding and mechanical interlocking of the alkali treated fibres with PLA could be responsible for the increased IFSS for ATPLA system compared to UFPLA system. Long and short fibre reinforced PLA composites were also produced with various processing conditions using compression moulding. A 32 wt% alkali treated long fibre PLA composite produced by film stacking with a TS of 83 MPa, YM of 11 GPa, flexural strength of 143 MPa, flexural modulus of 6.5 GPa, IE of 9 kJ/m2, and KIc of 3 MPa.m1/2 was found to be the best. This could be due to the better bonding of the alkali treated fibres with PLA. The mechanical properties of this composite have been found to be the best compared to the available literature. Hygrothermal and accelerated ageing of 32 wt% untreated and alkali treated long fibre/PLA composites ATPLA composites were more resistant than UFPLA composites towards hygrothermal and accelerated ageing environments as revealed from diffusion coefficients and tensile, flexural, impact, KIc, SEM, differential scanning calorimetry (DSC), WAXRD, and FTIR results. Increased potential hydrogen bond formation and mechanical interlocking of the alkali treated fibres with PLA could be responsible for the increased resistance of the ATPLA composites. Based on the present study, it can be said that the performance of natural fibre composites largely depend on fibre properties (e.g. length and orientation), matrix properties (e.g. cure kinetics and crystallinity), fibre treatment and processing methods, and composite processing methods.

Page generated in 0.0636 seconds