Spelling suggestions: "subject:"shell cash"" "subject:"shell ash""
1 |
Geotechnical Investigation and Characterization of Bivalve-Sediment InteractionsConsolvo, Samuel Thomas 24 June 2020 (has links)
Scour around important foundation elements for bridges and other coastal infrastructure is the leading cause of failure and instability of those structures. Traditional scour mitigation methods, such as the placement of riprap, the use of collars or slots, embedding foundations deeper, or a combination thereof can be costly, require long-term maintenance, and can potentially have detrimental environmental effects downstream. These difficulties with traditional methods are potentially alleviated with the implementation of self-sustaining bivalve (e.g., mussel, oyster, scallop) farms that could act as mats of interconnected living barriers, protecting the seabed from scour. The mats would help to attract larval settlement by making the substrate a more suitable habitat, contributing to the sustainability of the bivalve farms. Colonies of bivalves are already being used as living shorelines for retreatment mitigation, embankment stabilization, and supporting habitat for other marine life. These applications are accomplished, in part, by bivalves' strong attachment capabilities from the bioadhesives they secrete that act as a strong underwater glue, adhering their shells to granular substrate. Some species of mussels have been shown to withstand water flow velocities greater than 6 m/s without detaching. For reference, riprap with a median grain size of about 655 mm has been shown to require a flow velocity of at least 1.7 m/s for incipient motion of the boulder-sized riprap. In addition to the contiguous living bivalve mat offering scour protection, the whole or fragmented shells (i.e., shell hash) that are left behind from dead bivalves are hypothesized to reduce erosion potential. Shell hash-laden sediments should be able to better withstand shearing, thereby increasing the critical shear stress required to erode material, compared to sediment without shell hash.
Habitat suitability for bivalve colonies is also an important consideration to evaluate what surface enhancements may be needed for a site to be selected for implementation of bivalve scour mats. Bed surfaces that consist of unconsolidated fine-grained sediment are unlikely to be able to support bivalve species as the organisms could sink into the sediment, not allowing solid anchoring points. In contrast, harder substrates typically found in granular sediments offer much more suitable habitats. Along with testing the influence of shell hash and bioadhesive on sediment behavior, this thesis aims to establish a methodology to evaluate whether a section of seafloor can support bivalves or enhancement materials (e.g., shell, shale, or slag fragments) without them sinking, thereby depriving them of oxygen.
Together, the examining of geotechnical aspects of bivalve habitat enhancement through seabed soil alteration and the influence of shell hash and bioadhesives on sediment shear behavior are part of a novel multidisciplinary approach toward this proposed bioengineered scour solution. Consequently, the research objectives explored in this thesis are as follows: (1) characterize morphology of existing bivalve colonies through acoustic and direct field measurements; (2) evaluate the spatial variation of the sediment shear strength in terms of proximity to bivalve colonies; (3) expand the domain of confining pressures and shell hash weight fractions used in sediment strength testing; (4) quantify the changes in shear strength and erodibility from laboratory tests on sampled material with and without the presence of bioadhesives, as well as shell fragments mixed in with the sediment; and, (5) develop a methodology ranking system for the suitability of a surficial sediments to support seeding material to improve benthic life habitat substrates.
Three exploratory field surveys were conducted where colonies of oysters and other benthic life were present: in the Piankatank River in Virginia, in the Northwest Arm of the Sydney Harbour in Nova Scotia, Canada, and at the Rachel Carson Reserve in North Carolina. Field sampling techniques included Ponar grab samples, hand-dug samples, X-ray rectangular prism cores, and cylindrical push cores, which were all pivotal to understanding sediment composition, size and shape of particle distributions, as well as in-situ depth profiles of shells. Remote sensing and intrusive instrumentation included a rotary scanning sonar, acoustic Doppler current profilers, CTD (Conductivity, Temperature, Depth) probes, underwater cameras, a portable free-fall penetrometer, and in-situ jet erosion testing which helped to characterize the morphology of the bivalve colonies and the spatial variability of sediment strength. Subsequent laboratory experiments included grain size distribution analyses, vacuum triaxial tests to measure changes in shear strength with and without shell hash, and miniature vane and pocket erodometer tests on bioadhesive-treated sediments. The results showed: (1) a significant increase in the standard deviation of the backscatter intensity where the oyster reef was located; (2) the in-situ sediment shear strength increased slightly closer to the oyster reef at the Piankatank River site; (3) samples with a higher oyster density exhibited less uniform particle size distributions; (4) the presence of less than approximately 4% (by weight) of shell fragments increased the secant friction angle by approximately 6° relative to samples with no shell fragments; and, (5) the harbor bed of the Northwest Arm of the Sydney Harbour is a suitable stiffness for enhancement with shell hash over about 23% of its area. Preliminary testing showed a subtle increase in the torsional shear resistance and a decrease in erodibility for bioadhesive-treated samples; however, further testing is needed for confidence to be achieved in the results due to bioadhesive supply issues. / Master of Science / Oysters and mussels are aquatic mollusks (i.e., bivalves) that are known to be able to withstand strong storm flows without detaching from rocks and other hard surfaces. Knowing this and the increasing need for environmental- and ecological-friendly solutions in engineering and construction further accelerated by climate change and sea level rise are the motivations for studying whether bivalves can be used in this capacity. Traditional methods to protect against bridge failures caused from individual piers that become unstable from sediment eroding away from their bases can be costly, require long-term maintenance efforts, and can potentially have detrimental environmental impacts. As an alternative to or supplement to traditional methods, bivalves could be laid down in mats near the base of piers to act as a protective interconnected layer, diverting strong water flows away from the otherwise exposed sediments susceptible to erosion while strengthening the seabed.
Much is known and has been investigated on the biology of bivalves but understanding how these organisms influence the sediments near them has not been studied extensively from a geotechnical engineering perspective. Specifically, within geotechnical engineering, this study is focused primarily on the influence of oyster shell fractures, naturally found in the vicinity of bivalve colonies, and the organic glue that bivalves use to attach themselves to rocks on the engineering behavior of nearby sediments. Secondary to that main objective is to establish a methodology to evaluate whether a section of seafloor can support bivalves without them sinking, thereby suffocating them. In summary, this thesis investigates methods to evaluate whether the seafloor is suitable for supporting bivalves and if their presence changes the way sediments behave after various forces are applied.
To accomplish these research goals, three exploratory field surveys were conducted for this thesis: in the Piankatank River in Virginia, in the Northwest Arm of the Sydney Harbour in Nova Scotia, Canada, and at the Rachel Carson Reserve in North Carolina where bivalves were present. Through field sediment sampling, underwater sonar imagery, penetrating probes, and subsequent geotechnical laboratory testing, shell-sediment interactions were characterized. The results showed: (1) an oyster reef in the Piankatank River could be observed in great detail with sonar imagery; (2) sediment strength increased slightly the closer to the oyster reef; samples with more oyster shells in them exhibited (3) a wider range of particle sizes and (4) an increase in sediment strength; and (5) less than a quarter of the harbor bed of the Northwest Arm of the Sydney Harbour is suitable for armoring the seafloor with pieces of shell, shale, and slag to support bivalve growth. Initial tests with the organic underwater glue from bivalves showed promising results with respect to improvements in sediment strength and decreased erodibility, however, further testing is needed as supply of the organic glue was limited.
|
2 |
Effects of fouling and organic matter wastes from marine aquaculture on the macrofauna and biogeochemistry of sedimentsCasado-Coy, Nuria 09 June 2021 (has links)
La industria de la acuicultura se está expandiendo debido a la demanda de alimentos por el crecimiento de la población. En 2019, en España, la producción alcanzó 342.867 toneladas y un valor de primera venta de 501 millones de euros (APROMAR 2020). Las principales especies producidas fueron los mejillones (77%), la lubina (8%) y la dorada (4%), todas especies cultivadas en zonas costeras. Las principales estructuras donde se cultivaban estas especies son bateas y long lines para mejillones (4.793 instalaciones) y jaulas flotantes para lubina y dorada (43 instalaciones) (APROMAR 2020). Ambos cultivos producen enriquecimiento por MO y acumulación de restos de valva de mejillón en los sedimentos marinos. Sin embargo, existe una falta de conocimiento para poder entender todas las consecuencias ecológicas de la interacción entre el enriquecimiento por MO y la acumulación de valvas de mejillón en los ecosistemas bentónicos, ya que aunque se ha estudiado en profundidad el efecto del enriquecimiento por MO sobre los sedimentos (Holmer et al. 2005a; Apostolaki et al. 2007; Holmer et al. 2007), los efectos de acumulación los restos de valva de mejillón en los ecosistemas de sedimentos apenas se han investigado (Newell 2004; Wilding 2012; Wilding and Nickell 2013). Por lo tanto, para mejorar el conocimiento de los impactos de la acuicultura y sus interacciones en los sedimentos, los objetivos generales de la presente tesis doctoral han sido: Capítulo 2) Analizar el efecto de la bioturbación en la capacidad metabólica de los sedimentos a lo largo de un gradiente de enriquecimiento por MO derivado de la acuicultura marina. Capítulo 3) Investigar la interacción entre el enriquecimiento por valva de mejillón y por MO derivado de la acuicultura en flujos biogeoquímicos de sedimentos marinos. Capítulo 4) Comprobar el efecto del enriquecimiento por valva de mejillón y por MO procedente de la acuicultura en la capacidad de bioturbación de la comunidad de la macrofauna de los sedimentos marinos. Las principales conclusiones de esta tesis son: 1. Los sedimentos bioturbados, al promover las condiciones óxicas, pueden amortiguar las consecuencias negativas relacionadas la limitación de oxígeno producidas por el aporte extra de materia orgánica de la actividad acuícola. 2. La prevalencia de condiciones óxicas a través de la bioturbación de la macrofauna puede disminuir la importancia de las vías anaeróbicas de mineralización de la materia organica del sedimento bajo la influencia de la acuicultura, limitando la capacidad metabólica del sedimento. 3. En sedimentos bioturbados, su capacidad metabólica puede no seguir una relación lineal con el nivel de enriquecimiento por materia orgánica derivado de la actividad acuícola, aumentando la acumulación de contenido de MO en el sedimento a altas tasas de aporte de la materia orgánica. 4. Analizar la capacidad metabólica de los sedimentos podría ser una herramienta relevante para predecir la respuesta de los sedimentos frente al enriquecimiento de materia orgánica de los sistemas de acuicultura. 4. El análisis de la capacidad metabólica de los sedimentos puede ser una herramienta relevante para predecir la respuesta de los sedimentos frente al enriquecimiento por materia orgánica derivada de la acuicultura. 5. Los restos de valva de mejillón procedentes de los sistemas acuícolas sobre sedimentos arenosos sin macrofauna, en condiciones de enriquecimiento por materia orgánica, pueden disminuir la tasa de liberación de amonio a la columna de agua, limitando las consecuencias ecológicas negativas derivadas de la eutrofización. 6. Los restos de valva de mejillón, procedentes de los sistemas acuícolas, en sedimentos arenosos contaminados por materia orgánica pueden reducir la acumulación de los subproductos de vías metabólicas anaeróbicas, mejorando el estado ecológico del sedimento impactado. 7. Los restos de valva de mejillón, procedentes de los sistemas acuícolas, pueden modificar la comunidad de la macrofauna de los sedimentos arenosos en áreas oligotróficas, triplicando su abundancia y biomasa, y promoviendo la abundanica de familias con mayor capacidad de bioturbación, específicamente las familias Nassaridae y Nereididae. El efecto de los restos de valva de mejillón en la comunidad de la macrofauna bentónica está modulado por las características del sedimento, específicamente por el tamaño del grano y el contenido natural de materia orgánica. No se han obtenido efectos negativos significativos de los restos de valva de mejillón sobre la comunidad de sedimentos macrofaunales y sobre sus parámetros fisicoquímicos. 10. Los restos de valva de mejillón procedentes de los sistemas acuícolas, que suelen tratarse como un producto de desecho, podrían utilizarse para mitigar los efectos negativos de la contaminación por materia orgánica en los sedimentos marinos, particularmente en sitios defaunados. 11.Mantener los restos de conchas de mejillón derivados del sistema de acuicultura en sedimentos arenosos podría beneficiar la capacidad de bioturbación de la comunidad de la macrofauna que podría mejorar el metabolismo aeróbico de los sedimentos, reduciendo el coste de su gestión de extracción del sedimento y previniendo las posibles perturbaciones asociadas. / La parte experimental de la presente tesis doctoral ha sido costeada por el proyecto del Ministerio de Ciencia, Innovación y Universidades títulado "IMPLICACIONES ECOLOGICAS DE FONDOS MARINOS BIOGENICOS ARTIFICIALES: ACUMULOS DE RESTOS DE BIVALVOS COMO HERRAMIENTA DE MITIGACION ORGANICA Y SUMIDERO DE CARBONO" (CGL2015-70136-R).
|
Page generated in 0.0612 seconds