• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • 1
  • 1
  • Tagged with
  • 13
  • 13
  • 6
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Modeling Repair Patches of Ship Hull and Studying the Effect of Their Orientation on Stresses

Enwegy, Halima 01 January 2014 (has links)
The hull is the most important structural part of any maritime vessel. It must be adequately designed to withstand the harsh sailing environmental conditions and associated forces. In the past, the basic material used to manufacture the ship hull was wood, where the hull was usually shaped as cylindrical wooden shanks. In the present, hull designs have developed to steel columns or stiffened panels that are made of different types of materials. Panels that are stiffened orthogonally in two or more directions and have nine independent material constants are defined as orthotropic panels, and they achieve high specific strength. This thesis presents the effect of different patch orientations on the resulting strain and stress concentrations at the area of interaction between the panel and the patch. As it is known, the behavior of stiffened plates is affected by several important parameters, e.g., length to width ratio of the panel, stiffener geometry and spacing, aspect ratio for plates between stiffeners, plate slenderness, von Mises stresses, initial distortions, boundary conditions, and type of loading. A finite element model of the ship hull has been developed and run on ABAQUS (commercially available finite element software). The stiffened panel and patch are modeled as equivalent orthotropic plates made of steel. The panel edges are considered to be simply supported, and uniaxial tension was applied to the equivalent stiffened panel in addition to the lateral pressure (from water interaction). The developed model successfully predicted the optimal orientation of the panel for maximum stress concentration reduction. Moreover, in order to minimize the severe conditions caused by the mismatch that occurs if the material properties of the patch and the panel are the same during the patching process, it is necessary to stiffened the patch more than the panel. The developed model also suggested that an isotropic layer be added at the interaction to decrease the severity of arising stresses.
12

Feasible Form Parameter Design of Complex Ship Hull Form Geometry

McCulloch, Thomas L 20 December 2018 (has links)
This thesis introduces a new methodology for robust form parameter design of complex hull form geometry via constraint programming, automatic differentiation, interval arithmetic, and truncated hierarchical B- splines. To date, there has been no clearly stated methodology for assuring consistency of general (equality and inequality) constraints across an entire geometric form parameter ship hull design space. In contrast, the method to be given here can be used to produce guaranteed narrowing of the design space, such that infeasible portions are eliminated. Furthermore, we can guarantee that any set of form parameters generated by our method will be self consistent. It is for this reason that we use the title feasible form parameter design. In form parameter design, a design space is represented by a tuple of design parameters which are extended in each design space dimension. In this representation, a single feasible design is a consistent set of real valued parameters, one for every component of the design space tuple. Using the methodology to be given here, we pick out designs which consist of consistent parameters, narrowed to any desired precision up to that of the machine, even for equality constraints. Furthermore, the method is developed to enable the generation of complex hull forms using an extension of the basic rules idea to allow for automated generation of rules networks, plus the use of the truncated hierarchical B-splines, a wavelet-adaptive extension of standard B-splines and hierarchical B-splines. The adaptive resolution methods are employed in order to allow an automated program the freedom to generate complex B-spline representations of the geometry in a robust manner across multiple levels of detail. Thus two complementary objectives are pursued: ensuring feasible starting sets of form parameters, and enabling the generation of complex hull form geometry.
13

Hur Biofouling Påverkar Östersjön : En allmän litteraturstudie / How Biofouling Affects the Baltic Sea : A general literature study

Eliasson, Emil, Dahl, William January 2023 (has links)
The aim of this literature study was to investigate the effects of biofouling in the Baltic Sea. This was done to increase environmental awareness and understanding of the importance of a sustainable marine environment. A systematic search in selected databases resulted in the study being based on tio research articles. The overall results of the study show that biofouling demonstrate negative effects, but the effects are not fully understood to date and the focus is still on economic aspects. Furthermore, it was observed that the studied organizations are currently focused on greenhouse gas issues, but they have also been paying attention to biofouling problems in recent time. The literature study provides important insights into the effects of biofouling.

Page generated in 0.0412 seconds