• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 67
  • 12
  • 7
  • 3
  • 1
  • Tagged with
  • 104
  • 104
  • 32
  • 31
  • 17
  • 16
  • 15
  • 15
  • 15
  • 15
  • 15
  • 14
  • 13
  • 13
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Optical Measurement Techniques For High-Speed, Low-Density Flows In A Detonation Driven Shock Tube

Catriona Margaret L White (11820119) 18 December 2021 (has links)
<p>Hypersonic flow conditions, such as temperature, pressure, and flow velocity, are challenging to measure on account of the extreme conditions experienced by a craft moving above Mach 5. At Mach 5, the temperature in stratospheric air behind a normal shock wave exceeds temperatures of 1,300 K, and as the craft speed increases, so does the temperature. At these temperatures and conditions, traditional measurement techniques such as thermocouples and pressure transducers either alter the flow path, affecting the measurement, or they do not survive the external conditions. As such, there is interest in investigating alternative ways to measure flow properties. This thesis focuses on the implementation of several optical measurement techniques designed to determine the flow temperature, density gradient, and flow velocity in a detonation driven shock tube. A detonation driven shock tube was chosen for the project as it reliably creates high-speed, low-density, gas flows that are reminiscent of hypersonic conditions. </p><p>The first optical measurement technique implemented was background oriented schlieren, a measurement technique that quantitatively provides density gradient data. Experimental data obtained at pressures up to 3,000 psia resulted in density gradients at the exit of the detonation tube in good agreement with the literature.</p><p>The detonation tube was also fitted with two fiber optic ports to gather chemiluminescence thermometry data. Both a Stellarnet Black-Comet spectrometer and a Sydor Ross 2000 streak camera were used to capture spectroscopic data at these ports, in order to determine the detonation speed and the rotational temperature of the intermediate OH* combustion products. The Stellarnet spectrometer did not have a fast enough data capture rate to gather reliable data. While the streak camera captured data quickly, we had difficulty gathering enough light from the combustion event and the gathered data was very noisy. The streak camera did however capture the time duration of the full combustion event, so if the fiber connector ports are improved this data taking method could be used in the future to gather rotational temperature data. Both measurement techniques provided some unintrusive measurements of high-speed flows, and improvements to the data taking system could provide much needed information on hypersonic flow conditions. </p>
72

The Design and Implementation of a Supersonic Indraft Tube Wind Tunnel for the Demonstration of Supersonic Flows

Johnson, Daniel Kenneth 01 June 2018 (has links)
Historically, the endeavor of scale testing flight vehicles at supersonic Mach numbers, especially for long durations, has required the development of closed-loop wind tunnels, which are extremely expensive both to build and operate due to the high complexity and incredible power required to drive such a system. The intermittent blowdown wind tunnel, indraft tunnel, and shock tunnel have alleviated many of these cost requirements to some degree, whilst facilitating testing at very high Mach numbers and enthalpies; however, these systems require the handling of gases at pressures and temperatures that can be prohibitive for many university settings. The Ludwieg tube provides a simple, elegant method for producing testable supersonic flows at price points significantly lower than the aforementioned test-system architectures. Unfortunately, the spacial footprint and moderate cost required for driver tube and nozzle hardware can make it difficult to implement for many non-research universities. In this thesis, a new supersonic test system architecture is conceived, designed, implemented, and validated for the purpose of making supersonic aerodynamic testing capability attainable for most universities, by combining properties of the Ludwieg Tube and indraft wind tunnel to reduce the cost needed to produce this capability. This system, the Indraft Tube Tunnel, requires no long driver-tube or test-section hardware, aside from a vacuum chamber. Furthermore, it is safe to operate, as high pressure containment systems are not required for the Indraft Tube Tunnel System. It is designed and operated to draw stagnant atmospheric air through a converging-diverging nozzle to achieve a steady-state Mach number of 2.5. Sufficient pressure ratio to reach the desired Mach number is attained by evacuating the vacuum chamber and placing a thin cellophane diaphragm across the inlet of the nozzle, thus separating the vacuum section from ambient atmosphere. To initiate gas flow, the diaphragm is mechanically burst with a puncture device. This design requires much less hardware to implement than a typical Ludwieg tube, and had an operating cost of less than one dollar per test. Using this method, steady, uninterrupted Mach 2.44 is attained for a duration of 13.6 ms and a test section diameter of 7 inches. The standard deviation of the Mach number measurements is .08 Mach. A shadowgraph imaging setup is used to view and measure the angle of oblique shockwaves on a simple wedge test-model. The Indraft Tube Tunnel is novel in the field of high-speed aerodynamic testing, and may be implemented by other universities to produce supersonic flows with a relatively small investment in hardware and laboratory space.
73

Structural Performance of High-Strength Reinforced Concrete Beams Built with Synthetic Fibers

Bastami, Roukaya 16 December 2019 (has links)
This thesis presents the results of a research program examining the effects of macro-synthetic fibers on the shear and flexural behaviour of high-strength concrete (HSC) beams subjected to static and blast loads. As part of the study, a series of seventeen fiber-reinforced HSC beams are built and tested under either quasi-static four-point bending or simulated blast loads using a shock-tube. The investigated test parameters include the effects of: macro-synthetic fibers, fiber hybridization, combined use of fibers and stirrups and longitudinal steel ratio and type. The results show that under slowly applied loads, the provision of synthetic fibers improves the shear capacity of the beams by allowing for the development of yield stresses in the longitudinal reinforcement, while the combined use of synthetic fibers and stirrups is found to improve flexural ductility and cracking behaviour. The results also show that the provision of synthetic fibers delays shear failure in beams tested under blast pressures, with improved control of blast-induced displacements and increased damage tolerance in beams designed with combined fibers and stirrups. The study also shows that the use of hybrid fibers was capable of effectively replacing transverse reinforcement under both loading types, allowing for ductile flexural failure. Moreover, the use of synthetic fibers was effective in better controlling crushing and spalling in beams designed with Grade 690 MPa high-strength reinforcement. Furthermore, the results demonstrate that synthetic fibers can possibly be used to relax the stringent detailing required by modern blast codes by increasing the transverse reinforcement hoop spacing without compromising performance. As part of the analytical study, the load-deflection responses (resistance functions) of the beams are predicted using sectional (moment-curvature) analysis, as well as more advanced 2D finite element modelling. Dynamic resistance functions developed using both approaches, and incorporating material strain-rate effects, are then used to conduct non-linear single-degree-of-freedom (SDOF) analyses of the blast-tested beams. In general, the results show that both methods resulted in reasonably accurate predictions of the static and dynamic experimental results.
74

Blast Retrofit of Reinforced Concrete Walls and Slabs

Jacques, Eric January 2011 (has links)
Mitigation of the blast risk associated with terrorist attacks and accidental explosions threatening critical infrastructure has become a topic of great interest in the civil engineering community, both in Canada and abroad. One method of mitigating blast risk is to retrofit vulnerable structures to resist the impulsive effects of blast loading. A comprehensive re-search program has been undertaken to develop fibre reinforced polymer (FRP) retrofit methodologies for structural and non-structural elements, specifically reinforced concrete slabs and walls, subjected to blast loading. The results of this investigation are equally valid for flexure dominant reinforced concrete beams subject to blast effects. The objective of the research program was to generate a large volume of research data for the development of blast-resistant design guidelines for externally bonded FRP retrofit systems. A combined experimental and analytical investigation was performed to achieve the objectives of the program. The experimental program involved the construction and simulated blast testing of a total of thirteen reinforced concrete wall and slab specimens divided into five companion sets. These specimens were subjected to a total of sixty simulated explosions generated at the University of Ottawa Shock Tube Testing Facility. Companion sets were designed to study one- and two-way bending, as well as the performance of specimens with simply-supported and fully-fixed boundary conditions. The majority of the specimens were retrofitted with externally bonded carbon fibre reinforced polymer (CFRP) sheets to improve overall load-deformation characteristics. Specimens within each companion set were subjected to progressively increasing pressure-impulse combinations to study component behaviour from elastic response up to inelastic component failure. The blast performance of companion as-built and retrofitted specimens was quantified in terms of measured load-deformation characteristics, and observed member behaviour throughout all stages of response. The results show that externally bonded FRP retrofits are an effective retrofit technique to improve the blast resistance of reinforced concrete structures, provided that debonding of the composite from the concrete substrate is prevented. The test results also indicate that FRP retrofitted reinforced concrete structures may survive initial inbound displacements, only to failure by moment reversals during the negative displacement phase. The experimental test data was used to verify analytical techniques to model the behaviour of reinforced concrete walls and slabs subjected to blast loading. The force-deformation characteristics of one-way wall strips were established using inelastic sectional and member analyses. The force-deformation characteristics of two-way slab plates were established using commonly accepted design approximations. The response of all specimens was computed by explicit solution of the single degree of freedom dynamic equation of motion. An equivalent static force procedure was used to analyze the response of CFRP retrofitted specimens which remained elastic after testing. The predicted maximum displacements and time-to-maximum displacements were compared against experimental results. The analysis indicates that the modelling procedures accurately describe the response characteristics of both retrofitted and unretrofitted specimens observed during the experiment.
75

Methane And Dimethyl Ether Oxidation At Elevated Temperatures And Pressure

Zinner, Christopher 01 January 2008 (has links)
Autoignition and oxidation of two Methane (CH4) and Dimethyl Ether (CH3OCH3 or DME) mixtures in air were studied in shock tubes over a wide range of equivalence ratios at elevated temperatures and pressures. These experiments were conducted in the reflected shock region with pressures ranging from 0.8 to 35.7 atmospheres, temperatures ranging from 913 to 1650 K, and equivalence ratios of 2.0, 1.0, 0.5, and 0.3. Ignition delay times were obtained from shock-tube endwall pressure traces for fuel mixtures of CH4/CH3OCH3 in ratios of 80/20 percent volume and 60/40 percent volume, respectively. Close examination of the data revealed that energy release from the mixture is occurring in the time between the arrival of the incident shock wave and the ignition event. An adjustment scheme for temperature and pressure was devised to account for this energy release and its effect on the ignition of the mixture. Two separate ignition delay correlations were developed for these pressure- and temperature-adjusted data. These correlations estimate ignition delay from known temperature, pressure, and species mole fractions of methane, dimethyl ether, and air (0.21 O2 + 0.79 N2). The first correlation was developed for ignition delay occurring at temperatures greater than or equal to 1175 K and pressures ranging from 0.8 to 35.3 atm. The second correlation was developed for ignition delay occurring at temperatures less than or equal to 1175 K and pressures ranging from 18.5 to 40.0 atm. Overall good agreement was found to exist between the two correlations and the data of these experiments. Findings of these experiments also include that with pressures at or below ten atm, increased concentrations of dimethyl ether will consistently produce faster ignition times. At pressures greater than ten atmospheres it is possible for fuel rich mixtures with lower concentrations of dimethyl ether to give the fastest ignition times. This work represents the most thorough shock tube investigation for oxidation of methane with high concentration levels of dimethyl ether at gas turbine engine relevant temperatures and pressures. The findings of this study should serve as a validation for detailed chemical kinetics mechanisms.
76

Numerical Modeling Of The Shock Tube Flow Fields Before Andduring Ignition Delay Time Experiments At Practical Conditions

lamnaouer, mouna 01 January 2010 (has links)
An axi-symmetric shock-tube model has been developed to simulate the shock-wave propagation and reflection in both non-reactive and reactive flows. Simulations were performed for the full shock-tube geometry of the high-pressure shock tube facility at Texas A&M University. Computations were carried out in the CFD solver FLUENT based on the finite volume approach and the AUSM+ flux differencing scheme. Adaptive mesh refinement (AMR) algorithm was applied to the time-dependent flow fields to accurately capture and resolve the shock and contact discontinuities as well as the very fine scales associated with the viscous and reactive effects. A conjugate heat transfer model has been incorporated which enhanced the credibility of the simulations. The multi-dimensional, time-dependent numerical simulations resolved all of the relevant scales, ranging from the size of the system to the reaction zone scale. The robustness of the numerical model and the accuracy of the simulations were assessed through validation with the analytical ideal shock-tube theory and experimental data. The numerical method is first applied to the problem of axi-symmetric inviscid flow then viscous effects are incorporated through viscous modeling. The non-idealities in the shock tube have been investigated and quantified, notably the non-ideal transient behavior in the shock tube nozzle section, heat transfer effects from the hot gas to the shock tube side walls, the reflected shock/boundary layer interactions or what is known as bifurcation, and the contact surface/bifurcation interaction resulting into driver gas contamination. The non-reactive model is shown to be capable of accurately simulating the shock and expansion wave propagations and reflections as well as the flow non-uniformities behind the reflected shock wave. Both the inviscid and the viscous non-reactive models provided a baseline for the combustion model iii which involves elementary chemical reactions and requires the coupling of the chemistry with the flow fields adding to the complexity of the problem and thereby requiring tremendous computational resources. Combustion modeling focuses on the ignition process behind the reflected shock wave in undiluted and diluted Hydrogen test gas mixtures. Accurate representation of the Shock - tube reactive flow fields is more likely to be achieved by the means of the LES model in conjunction with the EDC model. The shock-tube CFD model developed herein provides valuable information to the interpretation of the shock-tube experimental data and to the understanding of the impact the facility-dependent non-idealities can have on the ignition delay time measurements.
77

Improved Connections for Blast-Resistant Curtain Walls

Nasseralshariati, Ehsan 01 September 2023 (has links)
Curtain walls provide exterior façade to modern buildings. When subjected to blast shock waves, curtain walls may suffer significant damage, potentially causing serious injuries and casualties to building occupants. Protective films, laminated glass and strengthening of mullions and transoms are used to protect curtain wall components against blast loads. Limited research is available on blast protection of curtain wall components. On the other hand, connections of curtain wall mullions with the supporting substrate, as well as mullion-transom connections form potentially vulnerable locations under blast loads. Research on these connections is lacking in the literature. Therefore, a comprehensive research project has been undertaken in this thesis to address the behavior, analysis, and design of curtain wall connections, both between the mullions and supporting concrete slabs/beams and the mullions and transoms. The research project consists of three phases: i) Experimental research using the University of Ottawa Shock Tube as blast simulator, ii) Numerical investigation based on three-dimensional finite element method (FEM) using LS-DYNA, and iii) Non-linear dynamic analysis of curtain wall systems based on a single-degree-of-freedom (SDOF) to develop a connection design procedure. The experimental phase consisted of tests of three full-size curtain walls mounted on steel HSS sections of the Shock Tube to investigate mullion-to-transom connections and nine single mullions connected to concrete beams to investigate mullion-to-concrete substrate connection. The single mullions either represented floor-to-floor mullions or continuous mullions over the supporting slab. They were connected to concrete beams (representing floor slabs) by means of brackets, which provided high degree of rotational restraints and full translational restraints or connected through damping materials (springs or HRD rubber pads), which allowed translational movements as they dampened the effects of the shock wave. The numerical investigation involved FEM analysis and modeling of all the test specimens. The first step involved the validation of numerical models against test data. The analysis was then extended to conduct a parametric investigation to cover cases that have not been covered in the experiments. This resulted in the investigation of six different design parameters used in connection design. The numerical outcomes illustrated the importance of blast effects on connection design parameters, support reactions, curtain wall response, force and stress distributions on curtain wall components. The information gathered through experimental and numerical research on connection performance led to the formulation of a connection design procedure. Single-degree-of-freedom (SDOF) dynamic analysis technique was adopted to curtain wall analysis as a tool to compute connection design forces. Both the Uniform Facilities Criteria (UFC) charted solution (manual calculations) and two computer software developed at the University of Ottawa (RC-Blast and CW-Blast) were used to conduct SDOF analysis to validate the procedure against experimental and numerical results before they were recommended as design tools. Finally, the details of connection design are provided for different types of connections.
78

Blast Performance of Hollow Metal Steel Doors

Keene, Colton Levi 18 September 2019 (has links)
Recent terrorist attacks and accidental explosions have prompted increased interest in the blast resistant design of high-risk facilities, including government offices, private sector buildings, transportation terminals, sporting venues, and military facilities. Current blast resistant design standards prioritize the protection of the primary structural system, such as walls, columns, and beams, to prevent a disproportionate collapse of the entire structure. Secondary structural systems and non-structural components, such as blast resistant doors, are typically outside the focus of standard building design. Components such as blast resistant doors are designed and manufactured by private sector entities, and their details are confidential and considered proprietary business information. For this reason, scientific research on blast resistant doors is sparse and most test results are unavailable for public consumption. Nevertheless, the performance of blast doors is crucial to the survival of building occupants as they are relied upon to contain blast pressures and remain operable after a blast event to allow ingress/egress. These important roles highlight the critical need for further research and development to enhance the level of protection provided by components that are often not considered in any detail by protective design practice. This thesis presents a combined experimental and analytical research program intended to support the development of blast resistant hollow metal doors. A total of 18 static beam-assembly tests were conducted, which consisted of the flexural four-point bending of door segments, to inform on the performance characteristics of full-sized blast resistant doors. Six tests were conducted to evaluate the effectiveness of three skin-core construction methodologies, which consisted of one epoxy and two weld attachment specifications, between door skins and their internal reinforcing structures. The remaining 12 tests were performed to evaluate the in-situ performance of hinge hardware typically installed on blast resistant door assemblies. The results of the skin-core construction tests demonstrated that closely spaced weld patterns would provide the best blast performance. The results of the hinge hardware tests demonstrated that hinges which provided a continuous load-path directly into the primary ii structural core elements of the door frame and door were ideal; furthermore, robust hinges with fully-welded or continuous knuckles were best suited for limiting undesirable deformations. A semi-empirical analytical methodology was developed to predict the global deformation response of full-sized hollow metal doors subjected to blast loading in the seated direction. The goal was to provide practicing engineers who are competent but non-expert users of high fidelity simulations with the flexibility to conduct in-house evaluation of the blast resistance of hollow metal doors without having to conduct live explosive or simulated blast tests. A finite element analysis was first performed to compute the door resistance function. Hollow metal door construction was idealized using a bulk material sandwiched between sheet metal skins and internally stiffened by stringers. The properties of the bulk material were calibrated such that the deformability of the idealized core reasonably approximated the global load-deformation behavior which occurs due to loss of composite action when welds fail. The resistance curves were then used in a singledegree-of-freedom dynamic analysis to predict the displacement response of the door subjected to blast loading. The proposed methodology was first validated against the static beam-assembly flexural tests. It was then extended to the case of a full-sized door subjected to shock tube blast testing using results published in the literature. The proposed methodology was found to reasonably approximate the out-of-plane load-deformation response of beam-assemblies and full-size doors, provided the bulk material properties of the idealized core are calibrated against experimental data. Finally, the new Virginia Tech Shock Tube Testing Facility was introduced. A description of the facility, including an overview of the shock tube's location, construction, main components, instrumentation, and key operating principles, were discussed. Operating guidelines and procedures were outlined to ensure safe, controlled, and repeated blast testing operations. A detailed calibration plan was proposed, and future work pertaining to the development of blast resistant hollow metal doors was presented. / Master of Science / Recent terrorist attacks and accidental explosions have motivated an increase in the demand for blast protection of critical infrastructure. Secondary components, such as doors, play a pivotal role in the protection of occupants as they ensure blast pressures are contained and ingress/egress is possible after a blast event. Experiments have been conducted to characterize the performance of several door construction methodologies (i.e., epoxy, reduced weld requirements) and the in-situ performance of hinge hardware through quasi-static testing of beams whose construction closely mimics that of a full-size door. Results of door construction testing indicated that, whenever possible, blast resistant doors should be constructed with full weld attachment (maximum specification with weld spaced every 3”) as these doors were found to provide the greatest resistance. Due to inconsistent and sudden failure mode, epoxy skin-core construction is not recommended for use in blast resistant doors at this time. Hinge testing determined that hinge mounting plates (which hinge hardware leaves are attached to) should be integrally connected to the frame and door internal reinforcing elements to provide adequate strength and that hinges with fully welded knuckles should be used for blast applications to limit deformation and facilitate post-blast operability. An ABAQUS finite element analysis methodology utilizing a “skins and stringers” approach to generate a beam-assembly model resulted in an adequate prediction of load deflection results recorded during beam-assembly testing after calibration of the model. An extension of this modeling approach was used to model full-size doors and adequately captured their dynamic performance when subjected to blast loading. Finally, preparation of the Virginia Tech Shock Tube Testing Facility, which is currently in progress, is summarized with regards to its calibration and the first round of testing which will focus on providing more data for comparison with the analysis methodology developed in this research.
79

Fundamental Chemical Kinetic Experiments of Combustion Products inside a Shock Tube

Pothen, Alex-Abraham 01 January 2024 (has links) (PDF)
The use of lateral divert thrusters on hypersonic vehicles would allow for fine-tuned attitude control at high Mach numbers. However, the jet interaction effects of lateral thrusters on the hypersonic flow field have not been investigated thoroughly. Computational Fluid Dynamics (CFD) can provide preliminary modeling of the jet interaction, but several variables such as vehicle geometry, velocity, and altitude, result in computationally expensive modeling or loss in accuracy of the results. Therefore, the goal of chemical kinetics testing and chemical model verification is to enhance the fidelity of the jet interaction effects, specifically the plume reaction with air and the plume interaction with vehicle instrumentation.
80

The response of submerged structures to underwater blast

Schiffer, Andreas January 2013 (has links)
The response of submerged structures subject to loading by underwater blast waves is governed by complex interactions between the moving or deforming structure and the surrounding fluid and these phenomena need to be thoroughly understood in order to design structural components against underwater blast. This thesis has addressed the response of simple structural systems to blast loading in shallow or deep water environment. Analytical models have been developed to examine the one-dimensional response of both water-backed and air-backed submerged rigid plates, supported by linear springs and loaded by underwater shock waves. Cavitation phenomena as well as the effect of initial static fluid pressure are explicitly included in the models and their predictions were found in excellent agreement with detailed FE simulations. Then, a novel experimental apparatus has been developed, to reproduce controlled blast loading in initially pressurised liquids. It consists of a transparent water shock tube and allows observing the structural response as well as the propagation of cavitation fronts initiated by fluid-structure interaction in a blast event. This experimental technique was then employed to explore the one-dimensional response of monolithic plates, sandwich panels and double-walled structures subject to loading by underwater shock waves. The performed experiments provide great visual insight into the cavitation process and the experimental measurements were found to be in good agreement with analytical predictions and dynamic FE results. Finally, underwater blast loading of circular elastic plates has been investigated by theoretically modelling the main phenomena of dynamic plate deformation and fluid-structure interaction. In addition, underwater shock experiments have been performed on circular composite plates and the obtained measurements were found in good correlation with the corresponding analytical predictions. The validated analytical models were then used to determine the optimal designs of circular elastic plates which maximise the resistance to underwater blast.

Page generated in 0.0345 seconds