Spelling suggestions: "subject:"shortterm forecasting"" "subject:"shorterm forecasting""
11 |
L'économie face aux enquêtes psychologiques 1944 -1960 : unité de la science économique, diversité des pratiques / Economics in the light of psychological surveys (1944 - 1960) : unity of science, diversity of practicesDechaux, Pierrick 01 December 2017 (has links)
Cette thèse étudie la trajectoire historique des enquêtes psychologiques produites au Survey Research Center de l’Université du Michigan à l’initiative de George Katona. Aujourd’hui, on ne retient de ces enquêtes que les indicateurs de confiance produits chaque mois par plus de cinquante pays pour analyser la conjoncture. Pourquoi continue-t-on à produire et à utiliser ces enquêtes et ces indicateurs alors qu’un consensus s’est produit en macroéconomie et en microéconomie autour d’un ensemble de modèles qui n’en font pas l’usage ? Pour répondre à cette question, on étudie plusieurs controverses qui se sont produites autour des enquêtes du Michigan entre 1944 et 1960. On montre que l’époque est caractérisée de décisions au sein des gouvernements et du monde des affaires. La thèse montre que si ces débats sont peu connus des économistes aujourd’hui, c’est parce qu’ils se sont poursuivis dans des champs disciplinaires périphériques à l’économie. Ces disciplines sont concernées par des problèmes pratiques dont les économistes théoriciens se sont progressivement détournés. En proposant une analyse des liens entre la théorie économique et sa mise en pratique, cette thèse offre une nouvelle manière d’appréhender l’histoire de la macroéconomie récente et de l’économie comportementale. L’histoire des dynamiques intellectuelles d’après-guerre ne se résume ni à des innovations théoriques, ni à un nouveau rapport entre la théorie et l’empirie. En effet, ces dynamiques reposent aussi sur la redéfinition des frontières entre la science et son art ; entre d’un côté l’économie et de l’autre le marketing et la conjoncture. / This dissertation looks at the historical development of George Kantona's psychological surveys at the Survey Research Center at the University of Michigan. The main legacy of this work has been the widespread adoption of confidence indicators. They are used each month by more than fifty countries and widely implemented by business managers and forecasters. How do we explain the widespread usage of these indicators despite a prevalent consensus in macroeconomics and microeconomics that does not consider them as important tools? In order to answer this question, we study several controversies that occurred around Michigan surveys between 1944 and 1960. It is shown that this era is characterized by many interdisciplinary exchanges guided by the practical needs of decision-makers in governments and private companies. I show that if economists know little about these debates, it is because they were maintained in disciplinary fields on the periphery of economics. These fields are centered on practical problems that theoretical economists progressively abandoned. This thesis offers a new way of understanding the history of recent macroeconomics and behavioral economics by proposing an analysis of the links between economic theory and its application in practice. For instance, the history of post-war intellectual dynamics cannot be reduced to theoretical innovations or to a new relationship between theory and empiricism. Indeed, these dynamics rely also on the transformation of the boundaries between the science and its art; between the economy on the one hand and marketing and forecasting on the other.
|
12 |
Développement de méthodes spatio-temporelles pour la prévision à court terme de la production photovoltaïque / Development of spatio-temporal methods for short term forecasting of photovoltaïc productionAgoua, Xwégnon 20 December 2017 (has links)
L’évolution du contexte énergétique mondial et la lutte contre le changement climatique ont conduit à l’accroissement des capacités de production d’énergie renouvelable. Les énergies renouvelables sont caractérisées par une forte variabilité due à leur dépendance aux conditions météorologiques. La maîtrise de cette variabilité constitue un enjeu important pour les opérateurs du système électrique, mais aussi pour l’atteinte des objectifs européens de réduction des émissions de gaz à effet de serre, d’amélioration de l’efficacité énergétique et de l’augmentation de la part des énergies renouvelables. Dans le cas du photovoltaïque(PV), la maîtrise de la variabilité de la production passe par la mise en place d’outils qui permettent de prévoir la production future des centrales. Ces prévisions contribuent entre autres à l’augmentation du niveau de pénétration du PV,à l’intégration optimale dans le réseau électrique, à l’amélioration de la gestion des centrales PV et à la participation aux marchés de l’électricité. L’objectif de cette thèse est de contribuer à l’amélioration de la prédictibilité à court-terme (moins de 6 heures) de la production PV. Dans un premier temps, nous analysons la variabilité spatio-temporelle de la production PV et proposons une méthode de réduction de la non-stationnarité des séries de production. Nous proposons ensuite un modèle spatio-temporel de prévision déterministe qui exploite les corrélations spatio-temporelles entre les centrales réparties sur une région. Les centrales sont utilisées comme un réseau de capteurs qui permettent d’anticiper les sources de variabilité. Nous proposons aussi une méthode automatique de sélection des variables qui permet de résoudre les problèmes de dimension et de parcimonie du modèle spatio-temporel. Un modèle spatio-temporel probabiliste a aussi été développé aux fins de produire des prévisions performantes non seulement du niveau moyen de la production future mais de toute sa distribution. Enfin nous proposons, un modèle qui exploite les observations d’images satellites pour améliorer la prévision court-terme de la production et une comparaison de l’apport de différentes sources de données sur les performances de prévision. / The evolution of the global energy context and the challenges of climate change have led to anincrease in the production capacity of renewable energy. Renewable energies are characterized byhigh variability due to their dependence on meteorological conditions. Controlling this variabilityis an important challenge for the operators of the electricity systems, but also for achieving the Europeanobjectives of reducing greenhouse gas emissions, improving energy efficiency and increasing the share of renewable energies in EU energy consumption. In the case of photovoltaics (PV), the control of the variability of the production requires to predict with minimum errors the future production of the power stations. These forecasts contribute to increasing the level of PV penetration and optimal integration in the power grid, improving PV plant management and participating in electricity markets. The objective of this thesis is to contribute to the improvement of the short-term predictability (less than 6 hours) of PV production. First, we analyze the spatio-temporal variability of PV production and propose a method to reduce the nonstationarity of the production series. We then propose a deterministic prediction model that exploits the spatio-temporal correlations between the power plants of a spatial grid. The power stationsare used as a network of sensors to anticipate sources of variability. We also propose an automaticmethod for selecting variables to solve the dimensionality and sparsity problems of the space-time model. A probabilistic spatio-temporal model has also been developed to produce efficient forecasts not only of the average level of future production but of its entire distribution. Finally, we propose a model that exploits observations of satellite images to improve short-term forecasting of PV production.
|
13 |
Прогнозирование нагрузки для поиска оптимальной топологии распределительной сети : магистерская диссертация / Load forecasting for optimizing the topology of distribution networksВоросцов, М. С., Vorostsov, M. S. January 2024 (has links)
The aim of this work is to develop a method for constructing an optimal dynamic topology of a 6/10 kV distribution network using a network sectioning algorithm (operation of switching devices) based on load forecasting to achieve the best indicators in terms of quality, reliability, and reduction of technological losses. / Целью работы является разработка метода построения оптимальной динамической топологии распределительной сети 6/10 кВ с применением алгоритма секционирования сети (работы коммутационных аппаратов) на основе прогноза нагрузки для достижения наилучших показателей по качеству, надежности, снижению технологических потерь.
|
Page generated in 0.0901 seconds