Spelling suggestions: "subject:"shrub expansion"" "subject:"shrub dexpansion""
1 |
Evaluating shrub expansion in a subarctic mountain basin using multi-temporal LiDAR dataLeipe, Sean January 2020 (has links)
High-latitude ecosystems have experienced substantial warming over the past 40 years, which is expected to continue into the foreseeable future. Consequently, an increase in vegetation growth has occurred throughout the circumpolar North as documented through remote sensing and plot-level studies. A major component of this change is shrub expansion (shrubbing) in arctic and subarctic ecotones. However, these changes are highly variable depending on plant species, topographic position, hydrology, soils and other ecosystem properties. Changes in shrub and other vegetation properties are critical to document due to their first-order control on water, energy and carbon balances. This study uses a combination of multi-temporal LiDAR (Light Detection and Ranging) and field surveys to measure temporal changes in shrub vegetation cover over the Wolf Creek Research Basin (WCRB), a 180 km2 long-term watershed research facility located ~15 km south of Whitehorse, Yukon Territory. This work focuses on the smaller Granger Basin, a 7.6 km2 subarctic headwater catchment that straddles WCRB’s subalpine and alpine tundra ecozones with a wide range of elevation, landscape topography, and vegetation. Airborne LiDAR surveys of WCRB were conducted in August 2007 and 2018, providing an ideal opportunity to explore vegetation changes between survey years. Vegetation surveys were conducted throughout Granger Basin in summer 2019 to evaluate shrub properties for comparisons to the LiDAR. Machine learning classification algorithms were used to predict shrub presence/absence in 2018 based on rasterized LiDAR metrics with up to 97% overall independent accuracy compared to field validation points, with the best-performing model applied to the 2007 LiDAR to create binary shrub cover layers to compare between survey years. Results show a 63.3% total increase in detectable shrub cover > 0.45 m in height throughout Granger Basin between 2007 and 2018, with an average yearly expansion of 5.8%. These changes in detectable shrub cover were compared across terrain derivatives created using the LiDAR to quantify the influence of topography on shrub expansion. The terrain comparison results show that shrubs in the study area are located in and are preferentially expanding into lower and flatter areas near stream networks, at lower slope positions and with a higher potential for topographic wetness. The greatest differences in terrain derivative value distributions across the shrub and non-shrub change categories were found in terms of stream distance, elevation, and relative slope position. This expansion of shrubs into higher-resource areas is consistent with previous studies and is supported by established physical processes. As vegetation responses to warming have far-reaching influences on surface energy exchange, nutrient cycling, and the overall water balance, this increase in detectable shrub cover has a wide range of impacts on the future of northern watersheds. Overall, the findings from this research reinforce the documented increase in pan-Arctic shrub vegetation in recent years, quantify the variation in shrub expansion over terrain derivatives at the landscape scale, and demonstrate the feasibility of using LiDAR to compare changes in shrub properties over time. / Thesis / Master of Science (MSc)
|
2 |
Integrating the effects of climate change and caribou herbivory on vegetation community structure in low Arctic tundraZamin, Tara 07 June 2013 (has links)
Arctic tundra vegetation communities are rapidly responding to climate warming with increases in aboveground biomass, particularly in deciduous shrubs. This increased shrub density has the potential to dramatically alter the functioning of tundra ecosystems through its effects on permafrost degradation and nutrient cycling, and to cause positive feedbacks to global climate change through its impacts on carbon balance and albedo. Experimental evidence indicates that tundra plant growth is most strongly limited by soil nutrient availability, which is projected to increase with warming. Therefore research to date into the mechanisms driving tundra 'shrub expansion' has taken a 'bottom-up' perspective, overlooking the potential role of herbivory in mediating plant-soil interactions. In this thesis, I integrate the impacts of climate warming and caribou browsing on tundra vegetation community structure, and specifically investigate if increases in soil fertility with warming might lead to changes in vegetation biomass and chemistry that could fundamentally alter herbivore-nutrient cycling feedbacks, shifting the role of caribou browsing from restricting shrub growth to facilitating it. Using experimental greenhouses, nutrient addition plots, and caribou exclosures at Daring Lake Research Station in the central Canadian low Arctic, I showed that warming increased soil nutrient availability and plant biomass, and that caribou browsing restricted tundra shrub growth under present conditions. Plant and soil nutrient pool responses to warming demonstrated that increased growing season temperatures enhanced tundra plant growth both by increasing soil nutrient availability and by inferred increases in the rate of photosynthesis, however that the former process was comparatively more limiting. Species- and plant part-specific changes in biomass and chemistry with warming and fertilization clearly indicated the rate and magnitude of change in soil fertility substantially alters plant community structure. Nonetheless, since plant nutrient concentrations decreased with warming and plant responses to browsing were independent of soil fertility, I did not find evidence for a shift from caribou decelerating to accelerating nutrient cycling with warming. Altogether this research indicates effective conservation and management of Rangifer populations is critical to understanding how climate change will affect tundra vegetation trajectories and ultimately tundra ecosystem carbon balances. / Thesis (Ph.D, Biology) -- Queen's University, 2013-06-07 15:13:21.698
|
3 |
Shrub expansion in the low Arctic: The influence of snow and vegetation feedbacks on nitrogen cyclingVankoughnett, Mathew 19 September 2009 (has links)
Climate change has coincided with expansion of deciduous shrub species in the Arctic. Increased deciduous vegetation in the tundra could have profound implications on regional climate, carbon balance, and biogeochemical cycling of nutrients. Winter biological processes may be a mechanism explaining shrub expansion in the Arctic. Tall shrubs accumulate relatively deep snowcover, raising winter soil temperature minima, enhancing microbial activity and promoting nitrogen mobilization that may then be taken up by shrubs. However, it has yet to be determined if shrubs can acquire winter-mobilized nitrogen, and if so, whether they acquire it early in the spring, or over the growing season. The purpose of this study was to test if increased snow alone or the combination of vegetation-type and snow depth affect nitrogen cycling and plant uptake. To test this, inorganic 15nitrogen tracer was added to control and experimentally deepened snow plots (using snowfences) in low birch hummock tundra, and to tall birch-dominated plots near Daring Lake, N.W.T. in the Canadian low Arctic.
The first study (Chapter 2) characterizes soil 15nitrogen cycling over a single winter to investigate if experimentally deepened snow in low birch hummock ecosystems enhances nutrient availability to plants in the early spring. In addition, 15nitrogen cycling in low birch hummock and tall birch ecosystems were compared to characterize the combined impacts of vegetation-type and snow depth on nutrient availability to plants by early spring. The second study (Chapter 3) investigated the longer term fate of added 15nitrogen to determine if 15nitrogen acquisition and allocation differs among plant species over a two year period. Together, the results indicate that nitrogen cycling in the low birch hummock tundra was not significantly affected by deeper snow over short (after one winter) or longer terms (two years). By contrast, nitrogen availability in early spring, and birch shrub 15nitrogen uptake after two years were enhanced in the tall birch as compared to the low birch hummock ecosystem. These results suggest that the combination of vegetation-type and snow depth effects in the tall birch ecosystem could be a mechanism contributing to tundra to shrubland transitions across the Arctic. / Thesis (Master, Biology) -- Queen's University, 2009-09-18 13:36:29.401
|
4 |
Corticular Photosynthetic Dynamics for a Coastal Evergreen Shrub: Myrica CeriferaVick, Jaclyn K. 01 January 2007 (has links)
I quantified seasonal variations in corticular photosynthesis in 1st through 5th order branches of Myrica cerifera L. (Myricaceae) in order to determine whether corticular photosynthesis contributes to whole plant carbon gain by reducing respirational CO2 loss. Maximum % refixation was 110 ± 39 % of CO2 efflux in the dark (Rd) in 1st order branches during winter, minimum was 18 ± 3 % in 5th order branches during summer. Variations in % refixation paralleled changes in photosynthetically active radiation (PAR). As light attenuated with increasing branch order % refixation decreased. Increased PAR in the winter due to a more sparse canopy lead to increases in % refixation. Total chlorophyll content and chlorophyll a:b ratios were consistent with shade acclimation as branch order increased. Corticular photosynthesis may be a mechanism to enhance shrub expansion due to increased whole plant carbon use efficiency (CUE) and water use efficiency (WUE) attributed to refixation.
|
Page generated in 0.0713 seconds