• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Emparelhamento de arestas de polígonos gerados por grafos / Side-pairing of polygons generated by graphs

Silva, Gheyza Ferreira da 24 February 2011 (has links)
Made available in DSpace on 2015-03-26T13:45:33Z (GMT). No. of bitstreams: 1 texto completo.pdf: 1007963 bytes, checksum: 8fb51039076c92104d50598359cf19d8 (MD5) Previous issue date: 2011-02-24 / This work has as main objective the study of side-pairing patterns for hyperbolic polygons with 12g−6 edges and angles 2π/3 generated by trivalent graphs, in the case when the quotient of the hyperbolic plane by a Fuchsian group Γ (generated by the side-pairing of the polygon), H2/Γ , is a closed surface of genus g, g ≥ 2. So we did a study in case of g = 2, based on [10] and for the case of g = 3, based on [17]. In this work, we deduce two ways to get closed paths in the trivalent graphs cited in [10] and [17] and we contribute with exemples and results for cases of g > 3. Moreover, we find generalizations for some of these side-pairing patterns. / Este trabalho tem como objetivo principal o estudo de emparelhamentos de arestas para polígonos hiperbólicos com 12g − 6 arestas e ângulos iguais a 2π/3 gerados por meio de grafos trivalentes, no caso em que o quociente do plano hiperbólico por um grupo Fuchsiano Γ (gerado pelo emparelhamento do polígono), H2/Γ , é uma superfície fechada de gênero g, g ≥ 2. Assim, fizemos um estudo para o caso de g = 2 baseado em [10] e para o caso de g = 3, baseado em [17]. Neste trabalho, nós deduzimos duas formas de obter os caminhos fechados nos grafos trivalentes citados em [10] e [17] e contribuímos com exemplos e resultados para casos em que g > 3. Além disso, encontramos generalizações para alguns desses emparelhamentos de arestas.

Page generated in 0.1037 seconds