• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 19
  • 6
  • 3
  • 1
  • Tagged with
  • 35
  • 35
  • 13
  • 12
  • 8
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

How to Build a High Accuracy, 100 Channel, PCM Encoder for $29.95

Powell, David G. 10 1900 (has links)
International Telemetering Conference Proceedings / October 26-29, 1992 / Town and Country Hotel and Convention Center, San Diego, California / Pulse Code Modulation (PCM) Encoders are extensively used in instrumentation and telemetry systems. Commercially available encoders are available from several sources and vary in complexity depending on the application. Encoders often include analog signal conditioning, a system clock, and one or more digital input ports. Many of these systems also cost several thousand dollars and the cost goes up when high data accuracy of one or two percent is required. This paper describes a low cost approach which has been used in production telemetry applications with great success and which yields a PCM encoder with data accuracies of better than 2%.
2

ADVANCED AIRBORNE TEST INSTRUMENTATION SYSTEM (AATIS) PROGRAM SYSTEM OVERVIEW

Chang, Dah W. 10 1900 (has links)
International Telemetering Conference Proceedings / October 25-28, 1993 / Riviera Hotel and Convention Center, Las Vegas, Nevada / The Advanced Airborne Test Instrumentation System (AATIS), one of the major instrumentation systems in use today by the Department of Defense (DoD), was developed in the late 1980's to improve and modernize its predecessor - the Airborne Test Instrumentation System (ATIS). Use of AATIS, by not only the Air Force but the Navy and Army, has improved instrumentation commonality and interoperability across multiple test programs. AATIS, developed by the same manufacturer as the DoD Common Airborne Instrumentation System (CAIS), has a common bus structure - enabling cross utilization of many components which will ease transition from one system to another. The objective of this paper is to provide an overview on the Advanced ATIS System and its logistics support concept. For system description, an overview is presented on the airborne system and related ground support equipment. A brief description is given on the three levels of maintenance being used or planned for by the using activities. Finally, a projection is presented on the utilization of this system for the next 3 years.
3

The Common Airborne Instrumentation System Program Overview

Jones, Sidney R. Jr 10 1900 (has links)
International Telemetering Conference Proceedings / October 25-28, 1993 / Riviera Hotel and Convention Center, Las Vegas, Nevada / The Common Airborne Instrumentation System (CAIS) is being developed by the Department of Defense through a Tri-service Program Office. The goals of the program are two fold. The first is to develop an instrumentation system that will meet the needs of the Air Force, Army, and Navy into the next century. The system is designed to support a full breadth of applications from a few parameters to engineering and management and development programs. The second is to provide a system that is airframe as well as activity independent. To accomplish these goals, the CAIS consists of two segments. The airborne segment consists of a system controller with a suite of data acquisition units. The system is configured with only the units that are required. The ground segment consists of a variety of support equipment. The support equipment enables the user to generate formats, load/verify airborne units, perform system level diagnostics and more.
4

Signal Conditioning, the Next Generation

Penharlow, David 11 1900 (has links)
International Telemetering Conference Proceedings / October 30-November 02, 1989 / Town & Country Hotel & Convention Center, San Diego, California / This paper describes the changes in signal conditioning techniques used on flight test programs in recent years. Improved sensors require improved signal conditioning. Advanced distributed data acquisition systems, used on major flight test programs, move the signal conditioning closer to the sensor for improved performance and reduced wiring throughout the vehicle. These distributed systems use digital communication between the master controller and the remote conditioning units for improved accuracy and noise immunity. This requires sample- and-hold amplifiers, analog-to-digital converters, and serial encoder/decoders to be located at the signal conditioning location. The changes in signal conditioning designs are driven by the sensors, the architecture of the data acquisition systems, and by vehicle designs (smaller aircraft, smaller missiles, composite structures, and hypervelocity vehicles). A look at the signal conditioning technology employed in many of these systems as well as what is anticipated in the future is described in this paper.
5

Automating Signal Conditioning Setup Through Integration with Sensor Information

Tate, Jeffrey J. 10 1900 (has links)
International Telemetering Conference Proceedings / October 27-30, 1997 / Riviera Hotel and Convention Center, Las Vegas, Nevada / Caterpillar Inc. has been testing construction and mining equipment using Computerized Analysis Vans for two decades. During our latest van upgrade, we chose to move to PCM/FM from FM/FM mainly to increase the channel count. We also replaced our old signal conditioning that used span and balance potentiometers with computer programmable signal conditioning. This new signal conditioning requires that the gain and balance point be calculated for every channel on each test. The formulas for these calculations depend on the sensor, the signal conditioning card used, and the test requirements. Due to the number and variety of machines tested at the Caterpillar Proving Grounds, these calculations needed to be automated. Using a few initial parameters and the information from our sensor calibration database, each channel’s balance point, gain, and expected slope are calculated. This system has increased productivity, accuracy, and consistency over manually calculating these parameters. This paper covers the sensor database, the calculated parameters and an overview of the way the system works.
6

REDUCING MAINTENANCE COSTS ON THE SHUTTLE PROGRAM

Gladney, Ed 10 1900 (has links)
International Telemetering Conference Proceedings / October 28-31, 1996 / Town and Country Hotel and Convention Center, San Diego, California / NASA and Lockheed Martin Telemetry & Instrumentation have jointly developed a new data acquisition system for the Space Shuttle program. The system incorporates new technologies which will greatly reduce manpower requirements by automating many of the functions necessary to prepare the data acquisition system for each shuttle launch. This new system, the Automated Data Acquisition System (ADAS), is capable of configuring itself for each measurement without operator intervention. The key components of the ADAS are the Universal Signal Conditioning Amplifier (USCA), the Transducer Electronic Data Sheet (TEDS), and the Data Acquisition System (DAS 450). The ADAS is currently being delivered and installed at Kennedy Space Center. NASA and Telemetry & Instrumentation are actively pursuing commercialization of the ADAS and its associated products which will be available during 1996.
7

Chinese New Telemetry Onboard System

Jie, Shi Chang 10 1900 (has links)
International Telemetering Conference Proceedings / October 17-20, 1994 / Town & Country Hotel and Conference Center, San Diego, California / This paper at first gives a brief historical review of Chinese development of telemetering onboard system and then make a brief introduction of new onboard system from several respects.
8

The Common Airborne Instrumentation System Program Management Overview

Brown, Thomas R., Jr. 10 1900 (has links)
International Telemetering Conference Proceedings / October 17-20, 1994 / Town & Country Hotel and Conference Center, San Diego, California / The Department of Defense, through a Tri-Service Program Office, is developing the Common Airborne Instrumentation System (CAIS) to promote standardization, commonality, and interoperability among aircraft test instrumentation systems. The advent of CAIS will change how the DoD test community conducts business. The CAIS program will allow aircraft test and evaluation facilities to utilize common airborne systems, ground support equipment, and technical knowledge for airborne instrumentation systems. The CAIS Program Office will conduct requirements analyses, manage system upgrades, and provide full life cycle support for this system. It is initiating several requirements contracts to provide direct ordering opportunities for DoD users to easily procure defined test instrumentation hardware. The program office will provide configuration management, inventory control, maintenance support, system integration, engineering support, and software management. In addition, it will continue to enhance the current system and develop new items to meet future requirements. Where existing equipment provides added benefit, this equipment may be added to the official CAIS family.
9

Design Considerations for a Variable sample Rate Signal Conditioning Module

Lee, Jeffrey C. 10 1900 (has links)
ITC/USA 2008 Conference Proceedings / The Forty-Fourth Annual International Telemetering Conference and Technical Exhibition / October 27-30, 2008 / Town and Country Resort & Convention Center, San Diego, California / Modern telemetry systems require flexible sampling rates for analog signal conditioning within telemetry encoders in order to optimize mission formats for varying data acquisition needs and data rate constraints. Implementing a variable sample rate signal conditioning module for a telemetry encoder requires consideration of several possible architectural topologies that place different system requirements on data acquisition modules within the encoder in order to maintain adequate signal fidelity of sensor information. This paper focuses on the requirements, design considerations and tradeoffs associated with differing architectural topologies for implementing a variable sample rate signal conditioning module and the resulting implications on the encoder system's data acquisition units.
10

MICROMINIATURE DISTRIBUTED DATA ACQUISITION SYSTEM

PENHARLOW, DAVID 11 1900 (has links)
International Telemetering Conference Proceedings / October 29-November 02, 1990 / Riviera Hotel and Convention Center, Las Vegas, Nevada / The new generation of advanced tactical aircraft and missiles places unique demands on the electronic and mechanical designs for flight test instrumentation, high bit rates, operating temperature range and system interconnect wiring requirements. This paper describes a microminiature PCM distributed data acquisition system with integral signal conditioning (MMSC) which has been used in advanced aircraft and missile flight testing. The MMSC system is constructed from microminiature, stackable modules which allow the user to reconfigure the system as the requirements change. A second system is also described which uses the same circuitry in hermetic hybrid packages on plug-in circuit boards.

Page generated in 0.1384 seconds