• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Inhibition de l'angiogenèse tumorale : criblage d'une chimiothèque et caractérisation d'un nouveau composé agissant sur la voie de signalisation Ras-ERK / Inhibition of tumor angiogenesis : screening of a chemical library and characterization of a new compound that targets the Ras-ERK signaling pathway

Castan, Agnès 03 October 2014 (has links)
Au cours des dernières années, des thérapies anti-cancéreuses ciblant l'angiogenèse tumorale ont été développées et ont démontré un bénéfice en terme de survie globale pour les patients atteints de certains cancers métastatiques. Cependant, dans de nombreux cas, les tumeurs acquièrent des résistances échappent au traitement. Le développement de nouveaux composés anti-angiogène est donc une réelle nécessité pour être proposés en seconde ligne thérapeutique. Dans ce travail, notre objectif était d'identifier de nouvelles molécules anti-angiogènes par le criblage à haut débit, de la chimiothèque académique de l'Université de Grenoble. Nous avons adapté le test de blessure sur cellules endothéliales au format des plaques de 96 puits et avons identifié une famille de molécules qui inhibent spécifiquement leur fermeture. L'activité anti-angiogène de la molécule leader (COB223) a été confirmée dans des modèles d'angiogenèse tridimensionnels in vitro, et, chez la souris, dans un modèle d'angiogenèse sous-cutanée. Nous avons testé l'activité anti-tumorale de COB223 dans un modèle de xénogreffe chez la souris et observé une diminution significative de la taille des tumeurs dans les souris traitées. A la recherche de son mécanisme d'action, nous avons observé que COB223 inhibe la prolifération cellulaire et diminue les phosphorylations de MEK et Raf, de ERK1/2 induites par le VEGF-A dans les cellules endothéliales. Nous avons également montré que COB223 n'inhibe pas les phosphorylations du VEGFR2 et de PLC. D'après ces résultats, nous proposons que la cible de COB est localisée dans la voie de signalisation VEGF/ PLC /PKC/ERK entre PKC et Ras. / Several anti-tumoral therapies targeting angiogenesis have been developed over the recent years and have demonstrated benefits for several metastatic cancers. However, in many cases, resistances to these treatments appear over time, allowing tumor escape. The development of new anti-angiogenic compounds is thus dramatically urged in order to propose second-line anti-angiogenic treatments. In this work, our aim was to identify new anti-angiogenic compounds through high throughput screening of the academic library from the University of Grenoble. We adapted the endothelial cell scratch assay to 96-well plates. We identified a family of molecules that specifically inhibited endothelial cell migration. The anti-angiogenic activity of the leader molecule (COB223) was confirmed in vitro in 3D cellular models of angiogenesis and in vivo using a mouse model of subcutaneous sponge implantation. We tested the anti-tumoral activity of COB223 on a mouse xenograft model. We observed that tumor growth was significantly reduced in treated mice correlated with decreased microvessel density. In search for its mechanism of action, we observed that COB223 inhibits cell proliferation and reduces VEGF-A-induced phosphorylation of MEK and ERK1/2 in endothelial cells. We also showed that COB223 did not affect VEGFR2 and PLC phosphorylation but reduces Raf phosphorylation responsible for its activity. These results allow us to propose that the molecular site of action of COB223 is located in the VEGF/ PLC /PKC/ERK pathway, between PKC and MEK.
2

Complex interplay between RAS superfamily GTPases and tumour suppressor RASSF effectors

Singh, Swati 12 1900 (has links)
Les trois proto-oncogènes RAS, soit HRAS, KRAS et NRAS (H/K/NRAS), sont les gènes les plus fréquemment mutés dans les cancers humains. Les énormes défis liés au ciblage thérapeutique des RAS soulignent la nécessité d’approfondir notre compréhension de la biologie de ces protéines et de trouver des stratégies alternatives pour traiter les cancers qu’elles induisent. Les petites GTPases RAS sont des régulateurs fondamentaux du développement et se lient à des protéines effectrices distinctes pour transmettre des signaux afin de réguler diverses voies de signalisation intracellulaires. Les effecteurs de RAS sont définis par un domaine de liaison à RAS (RBD) qui reconnaît la conformation active de RAS liée au GTP et active les voies de signalisation en aval. Par exemple, les effecteurs RAF et PI3K régulent les voies de signalisation MAPK et PI3K-AKT, respectivement, pour contrôler la prolifération, la survie et la tumorigenése. Alors que RASSF5 dirige RAS vers la voie Hippo, suppresseur de tumeur, mais cela reste moins bien compris. Il est intéressant de noter que la famille des domaines d'association à RAS (RASSF) comprend 10 effecteurs RAS supposés en aval, chacun comprenant un RBD, mais seul le RASSF5 se lie à H/K/NRAS. Les RASSF sont des suppresseurs de tumeurs connus et comptent parmi les protéines les plus fréquemment régulées à la baisse dans les cancers. La superfamille des petites GTPases RAS compte chez l’humain environ 160 protéines regroupées en cinq sous-familles : RAS, RHO, RAN, RAB et ARF. Alors que H/K/NRAS sont les mieux caractérisées et ont été au centre de la recherche sur le cancer, les fonctions cellulaires, la régulation et les protéines effectrices de nombreuses autres GTPases de la superfamille RAS restent obscures. Ma recherche doctorale visait donc à étudier le rôle des effecteurs de RASSF en cartographiant les interactions de BRAF et de quatre protéines de RASSF avec 83 GTPases appartenant aux sous-familles RAS, RHO et ARF et à utiliser ces connaissances pour démêler l'interaction complexe entre les GTPases et les effecteurs. Nous avons abordé des questions clés sur la spécificité des RBD envers les GTPases et avons révélé et validé 39 interactions RASSF-GTPase. Nous avons constaté qu'alors que BRAF démontre une spécificité restreinte pour les H/K/NRAS classiques, RASSF fait preuve de plasticité dans ses interactions avec les GTPases. RASSF5 interagit avec 10 GTPases distinctes de la sous-famille RAS (H/K/NRAS, RAP2B/2C, RRAS1/2, MRAS et RIT1/2) qui favorisent la croissance. La présence d’un complexe RASSF5-GTPase à la membrane plasmique redistribue la protéine YAP dans le cytosol et active la signalisation Hippo. Nous avons également montré que l'interaction de RASSF5 avec les kinases MST est essentielle pour l'activation de la voie Hippo médiée par le complexe RASSF5-GTPase. Nous avons également révélé que RASSF3, RASSF4 et RASSF8 lient les GTPases de la sous-famille RAS inhibitrices de croissance. RASSF8 subit une séparation de type liquide-liquide et réside avec YAP dans des gouttelettes non-membranaires. De plus, l'expression des partenaires GTPase de RASSF8 redistribue les condensats de RASSF8 et YAP de grandes structures périnucléaires. YAP et la voie Hippo entraînent une résistance aux inhibiteurs de RAS dans les cancers induits par RAS. Ainsi, nos découvertes sur l'association de RASSF5 et RASSF8 avec la voie Hippo pourraient aider à élucider les liens manquants entre les signalisations RAS et Hippo. Nous avons également identifié RASSF3 comme le premier effecteur canonique de MIRO1/2, des GTPases mitochondriales essentielles pour le fonctionnement et l'homéostasie des mitochondries. L'interaction de RASSF3 avec MIRO dans les mitochondries entraîne un effondrement du réseau mitochondrial. Pour comprendre la dynamique du réseau des GTPases, nous développons un outil de GTPase piégée inductible par la rapamycine. Ainsi, le piège qui garde la GTPase surexprimée inactive peut être libérée et la GTPase activée de manière conditionnelle en utilisant le traitement à la rapamycine. Cet outil sera utile pour élucider le rôle précis de chaque GTPase dans la régulation des effecteurs en aval in cellulo. Par conséquent, cette étude révèle la nature complexe des interactions entre GTPases et effecteurs et met en lumière l'importance biologique des protéines RASSF. / The three RAS proto-oncogenes, namely HRAS, KRAS and NRAS (H/K/NRAS) are the most frequently mutated genes in human cancers. H/K/NRAS small GTPases are fundamental regulators of development and bind distinct effector proteins to transmit signals to diverse cellular pathways. RAS effectors are defined by a RAS-binding domain (RBD) which recognizes the GTP-bound activated conformation of RAS and activates downstream signalling pathways. For example, RAF and PI3K effectors regulate the MAPK and PI3K-AKT signalling pathways, respectively, to control proliferation, survival and tumorigenesis. Whereas RASSF5 directs RAS to the tumour suppressor Hippo pathway but this remains less understood. Interestingly, the RAS Association domain family (RASSF) comprises 10 purported downstream RAS effectors, each of which comprises an RBD, but only RASSF5 binds to H/K/NRAS. RASSF are known tumour suppressors and are among the most frequently downregulated proteins in cancers. There are approximately 160 proteins in the human RAS superfamily that are clustered into five subfamilies: RAS, RHO, RAN, RAB and ARF. While H/K/NRAS are the best-characterized and have been a principal focus of cancer research, cellular functions, regulation and effectors for many other GTPases of the RAS superfamily remain recondite. My doctoral research therefore aimed to investigate the role of RASSF effectors by mapping the interactions of BRAF and four RASSF proteins with 83 GTPases belonging to the RAS, RHO and ARF subfamilies and use this knowledge to unravel the complex interplay between GTPase and effectors. I uncovered 39 RASSF–GTPase interactions and addressed key questions on RBD specificity towards GTPases. I found that while BRAF demonstrates restricted specificity for classical H/K/NRAS, RASSF shows plasticity in its interaction with GTPases. RASSF5 interacts with 10 distinct growth-promoting GTPases of the RAS subfamily (H/K/NRAS, RAP2B/2C, RRAS1/2, MRAS and RIT1/2). RASSF5–GTPase complex at the plasma membrane redistributes YAP to the cytosol and activates Hippo signalling. I also showed that RASSF5 interaction with MST hippo kinases is essential for RASSF5–GTPase complex-mediated activation of the Hippo pathway. I further revealed that RASSF3, RASSF4 and RASSF8 bind distinct growth-inhibiting RAS subfamily GTPases. RASSF8 undergoes liquid-liquid phase separation and resides in membraneless, phase-separated YAP condensates. Further, the expression of GTPase partners of RASSF8 redistributes RASSF8 and YAP condensates to large peri-nuclear structures. These findings show several GTPase–RASSF complexes play a role in Hippo signalling which may serve as potential therapeutic targets for RAS- or YAP-driven cancers. I also identified RASSF3 as the first canonical effector of MIRO1/2, mitochondrial GTPases that are essential for mitochondrial functions and homeostasis. RASSF3 interaction with MIRO at the mitochondria results in a collapse of the mitochondrial network. To understand the dynamics of the GTPase network, I am further developing a rapamycin-inducible trapped GTPase (RITG) tool, wherein a GTPase can be overexpressed while remaining occluded, and can be conditionally released or activated. This tool can be useful in elucidating the role of GTPases in the regulation of downstream effectors in cellulo. Overall, this study reveals the complex nature of GTPase–effector interactions and uncovers the biological significance of RASSF proteins.
3

Identification et étude de mécanismes régulant l’expression de MAPK

Ashton-Beaucage, Dariel 12 1900 (has links)
Les fichiers accompagnant le document sont en format Microsoft Excel 2010. / Les modèles classiques de signalisation cellulaire eucaryotes sont généralement organisés en voies linéaires et hiérarchiques, impliquant un ensemble de facteurs restreint. Ces facteurs forment un circuit isolé qui transmet une information externe vers sa destination, d’où une réponse cellulaire sera alors engendrée. Or, ces modèles sont justement le fruit d’approches expérimentales réductionnistes qui ne permettent pas d’intégrer aisément la contribution de facteurs multiples, ni de faire une évaluation quantitative de l’apport des composantes du système. Le développement de techniques d’investigation plus holistiques, telles la génomique fonctionnelle et la protéomique, permettent d’examiner de manière systématique et quantitative l’apport d’ensembles larges de facteurs et de les mettre en relation avec d’autres systèmes cellulaires. Il y aurait donc lieu de réévaluer le modèle de voie de signalisation linéaire au profit d’un modèle de réseau de signalisation multiparamétrique, comportant plusieurs branches d’entrée et sortie de signal interagissant avec d’autres systèmes cellulaires. Cet ouvrage porte sur la voie RAS/MAPK, l’un des principaux axes de signalisation associé à la prolifération et la différenciation cellulaires. Le sujet y est d’abord abordé sous l’angle d’une perspective historique, en mettant l’emphase sur les contributions des études de génétique classique chez les organismes modèles D. melanogaster et C. elegans. Il fait ensuite état du développement du criblage par ARNi pan-génomique dans ces deux modèles en le comparant aux approches de criblage génétique classique. Le corps de l’ouvrage décrit ensuite les résultats expérimentaux d’une campagne de criblage par ARNi visant à dresser une carte globale des régulateurs de la voie chez la drosophile. Trois groupes de régulateurs identifiés dans ce crible ont été caractérisés de manière plus détaillée. Dans un premier article, nous démontrons que les composantes du complexe EJC ont un impact sur l’épissage de mapk; une découverte doublement intéressante puisque l’EJC était jusqu’alors associé qu’à la régulation post-épissage des ARNm. Une seconde publication fait état de l’ensemble des résultats du crible ARNi, mettant l’emphase sur un ensemble de facteurs d’épissage qui modulent également mapk. Nous y montrons que l’impact de ces facteurs sur l’épissage alternatif est différent de celui de l’EJC, suggérant ainsi deux modes de régulation distincts. Finalement, dans un troisième manuscrit, nous nous attardons au rôle d’Usp47, une déubiquitinase qui, contrairement aux autres facteurs identifiés dans le crible, régule l’expression de MAPK de manière post-traductionnelle. Nous y détaillons une stratégie de criblage d’interaction génétique par ARNi visant à identifier des facteurs reliés fonctionnellement à Usp47. Ce second crible a permis l’identification de trois facteurs reliés au « N-end rule », un mécanisme de dégradation des protéines caractérisé par la reconnaissance des résidus N-terminaux de protéines ou peptides. Il existait jusqu’alors très peu de données quant à la régulation de l’expression des composantes de la voie MAPK, ce qui rend la description d’un large réseau de régulateurs agissant sur l’expression de MAPK d’autant plus insoupçonnée. L’absence d’un réseau équivalent rattaché aux autres composantes de la voie laisse supposer que MAPK serait un noeud servant de point d’entrée à ce type de régulation dans le système RAS/MAPK. De plus, nos travaux témoignent de la capacité de la génomique fonctionnelle à mettre en relation différents systèmes cellulaires de manière plus globale et à quantifier les liens établis entre eux. / The classical model of eukaryotic cellular signalling generally involves hierarchically organized linear pathways involving a restricted set of elements. These generally function together as an insulated circuit, transmitting information from the outside to the intracellular compartment involved in eliciting a response. These models, often the fruit of reductionist experimental approaches, do not allow for the integration of multiple inputs nor for a gradation of responses. The recent emergence of more holistic investigation techniques has brought about the re-evaluation of these classical models in favor of multiparametric signalling networks. This thesis focuses on the RAS/MAPK pathway, one of the cell’s main proliferation and differentiation signalling conduits, beginning with a historical perspective covering the contributions of model organism genetics to the current pathway model. This provides context for the description of a whole-genome RNAi screen experiment that we carried out to obtain a global view of regulators in Drosophila. Three groups of factors emerging from this screen were then examined in more detail. A first article shows that the exon junction complex (EJC) plays a role in mapk alternative splicing, an observation that is unexpected given that this complex was not previously known to act on splicing. A second paper details the genome wide screening campaign and focuses on a large set of splicing factors that also regulate mapk, albeit in a distinct manner than the EJC’s. Finally, a manuscript in a third segment examines Usp47 function and finds it to control MAPK levels post-translationally. An RNAi-based genetic interaction screen is then used to identify factors functionally related to Usp47 capable of counteracting its impact on MAPK levels. Three such factors identified through this technique are linked to the N-end rule protein degradation pathway. Regulation of core pathway component expression is a poorly described process, which makes the identification of a large set of factors regulating MAPK expression all the more unusual. Moreover, the absence of such regulation linked to other pathway components suggests that MAPK may act as a node incorporating inputs of this type into RAS/MAPK signaling dynamics.

Page generated in 0.0859 seconds