• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 6
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 46
  • 46
  • 11
  • 11
  • 8
  • 8
  • 7
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Využití polymerních proléčiv s cucurbitacinem D pro léčbu experimentálních nádorů / Use of polymer prodrugs containing cucurbitacin D for the treatment of experimental tumors

Hrabánková, Klára January 2021 (has links)
Chemotherapy is still the most widely used anti-cancer treatment. The majority of chemotherapeutics inhibit proliferating cells generally, not selectively cancer cells. The side effects associated with chemotherapy can be partly limited by conjugating a cytotoxic drug with a polymer nanocarrier. Such binding facilitates solubility in aqueous solutions, reduces systemic toxicity; and passively targets the drug directly into the tumour through the enhanced permeability and retention (EPR) effect. This thesis focuses on testing polymer conjugates based on N-(2-hydroxypropyl)methacrylamide (HPMA) carrying cucurbitacin D (CuD), a naturally occurring compound with potential anti-cancer activity. The mechanism of action is not elucidated yet, but several studies have depicted the inhibitory effect on signal transducer and activator of transcription 3 (STAT3) transcription factor. A STAT3 signalling pathway is overexpressed in several cancer cell lines and is also involved in the differentiation of myeloid- derived suppressor cells (MDSCs). We examined the therapeutic effect of the HPMA copolymers based on CuD in combined therapy with other polymer chemotherapeutics. CuD conjugates have shown in vitro cytotoxic effect on several model cancer cell lines. The combination with conjugates carrying doxorubicin...
32

Úloha signální dráhy integrity buněčné stěny při morfogenezi kvasinkových kolonií / Cell wall integrity signalling pathway and yeast colony morphology

Reslová, Gabriela January 2013 (has links)
In the yeast Saccharomyces cerevisiae, stress on the cell wall is caused by various external influences (e.g. exposure to chemicals, oxidative stress, osmotic changes, pH changes or heat shock) which trigger the cell wall integrity signalling pathway (CWI). The aim of my work was to investigate the effect of the CWI pathway on yeast colony morphogenesis. Using strains with deletions in genes of the CWI pathway derived from two parental strains BR-F-Flo11p-GFP and PORT, I have found that differences in genetic background influences the process and activation of this pathway. Among the strains derived from BR-F-Flo11p-GFP, only the strain with the deletion of MID2 affects the appearance of colonies. MID2 encodes a cell-surface sensor of CWI pathway. In all deletion strains derived from PORT, the disruption of the CWI pathway causes a slower development of colonies growing on glycerol medium supplemented with 0,05 mM selenate inducing fluffy colony morphology. The largest effect has deletion of gene MTL1 which also encodes a cell-surface sensor with homology to Mid2. I have confirmed that strains with deletions in genes of CWI pathway have altered sensitivity to inhibitors disrupting cell wall integrity (Calcofluor white, Congo red, zymolyase). By means of zymolyase assay, I have confirmed the...
33

Molekulární mechanismus účasti proteinů rodiny CSL v odpovědi na oxidativní stres u Schizosaccharomyces pombe / The molecular mechanism of CSL protein participation in oxidative stress response in Schizosaccharomyces pombe

Daněk, Petr January 2015 (has links)
Redox homeostasis maintenance is important for proper organism and cell function, for while relatively low amount of reactive oxygen (and nitrogen) species contributes to the fine tuning of signal transduction, excessive concentration of ROS (oxidative stress) has demonstrably harmful effects and is tightly connected to many pathological states. Cells therefore evolved broad palette of antioxidant mechanisms that express striking level of conservation among different species. Large, intricate stress response signaling networks have been already described; nonetheless, novel molecules employed in stress-related signaling are still being discovered. Several studies recently suggested transcription factors CSL, proteins essential for regulation of metazoan development as effectors of Notch signaling, are also involved in response to oxidative stress. The fission yeast Schizosaccharomyces pombe, well established model of response to various stresses, comprises two paralogs of CSL proteins - Cbf11 and Cbf12. We have found cells depleted of cbf11 are highly resistant to hydrogen peroxide. This resistance appears to be caused by upregulation of important stress responsive genes including ctt1, gst2, pyp2, and atf1. Cbf11 is therefore negative regulator of these genes, which suppresses their expression...
34

Optical techniques for the investigation of a mechanical role for FRMD6/Willin in the Hippo signalling pathway

Goff, Frances January 2019 (has links)
The mammalian hippo signalling pathway controls cell proliferation and apoptosis via transcriptional co-activators YAP and TAZ, and as such is a key regulator of organ and tissue growth. Multiple cellular components converge in this pathway, including the actin cytoskeleton, which is required for YAP/TAZ activity. The precise mechanism by which the mechanical actomyosin network regulates Hippo signalling, however, is unknown. Optical methods provide a non-invasive way to image and study the biomechanics of cells. In the past two decades, super-resolution fluorescence microscopy techniques that break the diffraction limit of light have come to the fore, enabling visualisation of intracellular detail at the nanoscale level. Optical trapping, on the other hand, allows precise control of micron-sized objects such as cells. Here, super resolution structured illumination microscopy (SIM) and elastic resonator interference stress microscopy (ERISM) were used to investigate a potential role for the FERM-domain protein FRMD6, or Willin, in the mechanical control of the Hippo pathway in a neuronal cell model. A double optical trap was also integrated with the Nikon-SIM with the aim of cell stretching. Willin expression was shown to modify the morphology, neuronal differentiation, actin cytoskeleton and forces of SH-SY5Y cells. Optical trapping from above the SIM objective, however, was demonstrated to be ineffective for manipulation of adherent cells. The results presented here indicate a function for Willin in the assembly of actin stress fibres that may be the result of an interaction with the Hippo pathway regulator AMOT. Further investigation, for example by direct cell stretching, is required to elucidate the exact role of Willin in the mechanical control of YAP/TAZ.
35

Caractérisation de protéines interagissant avec eIF4E, phosphorylées par TOR et modulant l’initiation de la traduction coiffe-dépendante chez Arabidopsis / Characterization of eIF4E-binding proteins that are phosphorylated by TOR and function in cap-dependent translation initiation in Arabidopsis

Srour, Ola 07 December 2016 (has links)
Chez les mammifères l’initiation de la traduction et, plus particulièrement, la formation du complexe eIF4F, est principalement régulée par la protéine kinase TOR (Target of rapamycin). Cette voie de régulation fait intervenir les protéines 4E-BP (eIF4E-binding proteins) dont l’activité est modulée par la phosphorylation par TOR. Sous leur forme non-phosphorylée, les 4E-BP se lient au facteur d’initiation eIF4E, empêchent son recrutement dans le complexe eIF4F et inhibent ainsi l’initiation de la traduction. Phosphorylées par TOR, les 4E-BP perdent leur affinité pour eIF4E et sont remplacées par eIF4G ce qui active la traduction. La régulation de l’initiation de la traduction par TOR via 4E-BP a été bien décrite dans plusieurs modèles eucaryotes, tels que la levure, les insectes et les mammifères, mais reste encore obscure chez les plantes. Les recherches réalisées au cours de ma thèse ont permis l’identification de deux protéines homologues de 4E-BP chez Arabidopsis. Ces protéines, que nous avons appelées ToRP1 et ToRP2 (TOR Regulatory Proteins), sont caractérisées par la présence d’un motif consensus indispensable pour la liaison à eIF4E, et qui existe chez les protéines 4E-BP des mammifères ainsi que chez eIF4G et eIFiso4G d’Arabidopsis. La protéine ToRP1 est capable d’interagir spécifiquement avec eIF4E, mais aussi avec TOR via son extrémité N-terminale en système double-hybride de levure. ToRP1 et ToRP2 ont également été caractérisées comme étant des cibles directement phosphorylées par TOR chez Arabidopsis. Deux sérines, en position 49 et 89 dans la protéine ToRP1, ont été identifiées comme des sites potentiels de cette phosphorylation. De plus, l’état de phosphorylation de ces sites affecte l’interaction avec eIF4E en système double-hybride de levure. Par ailleurs, des plants d’Arabidopsis déficients en ToRP1 et ToRP2 renforcent la traduction strictement coiffe-dépendante de l’ARNm CYCB1;1, alors que la surexpression de ToRP1 ou de ToRP2 réprime sa traduction. Ces résultats suggèrent donc que les protéines ToRP, identifiées chez Arabidopsis, sont de nouvelles cibles directes de TOR, qui, par leur phosphorylation, régule l’initiation de la traduction coiffe-dépendante. / The target of rapamycin (TOR) is an evolutionarily conserved kinase that is a critical sensor of nutritional and cellular energy and a major regulator of cell growth. TOR controls cap-dependent translation initiation, in particular the assembly of the eIF4F complex, by modulating the activity of eIF4E-binding proteins (4E-BPs). In their unphosphorylated state 4E-BP proteins sequester eIF4E and repress translation. Upon phosphorylation by TOR, 4E-BPs have a low affinity binding to eIF4E and are replaced by eIF4G thus activating translation initiation. 4E-BPs have been discovered in yeast and mammals but remain to be obscure in plants. Here, we identified and characterized two Arabidopsis proteins termed TOR Regulatory Proteins (ToRPs 1 and 2) that display some characteristics of mammalian 4E-BPs. ToRP1 and ToRP2 contain a canonical eIF4E-binding motif (4E-BM) found in mammalian 4E-BPs and Arabidopsis eIF4G and eIFiso4G. ToRP1 interacts with eIF4E, and, surprisingly, the N-terminal HEAT domain of TOR in the yeast two-hybrid system. ToRP1 and ToRP2 are highly phosphorylated at several phosphorylation sites in TOR-dependent manner in planta. Two of these phosphorylation sites have been identified as—S49 and S89—their phosphorylation status modulates ToRP1 binding to eIF4E in the yeast two-hybrid system. In plant protoplasts, ToRP2 can function as translation repressor of mRNAs that are strictly cap-dependent. Our results suggest that ToRPs can specifically bind the Arabidopsis cap-binding proteins (eIF4E/eIFiso4E) and regulate translation initiation under the control of TOR
36

Rôle des acides aminés dans la régulation de l'expression des gênes hépatiques du métabolisme intermédiaire chez la truite arc-en-ciel (Oncorhynchus mykiss) / Role of amino acids on the regulation of intermediary metabolism related gene expression in rainbow trout (Oncorhynchus mykiss) liver

Lansard, Marine 30 September 2010 (has links)
Ce travail de thèse avait pour objectif d’étudier la régulation de l’expression des gènes du métabolisme intermédiaire par les acides aminés alimentaires dans le foie de truite arc-en-ciel. Ces études ont permis de caractériser, pour la première fois dans le foie de truite, les principaux acteurs de la voie de signalisation Akt/TOR et leurs régulations. Nos résultats in vitro montrent qu’un mélange d’acides aminés, seul ou avec l’insuline, est capable de réguler l’expression de nombreux gènes impliqués dans la lipogenèse, la néoglucogenèse et la glycolyse. Les régulations observées en présence conjointe d’un mélange d’acides aminés et d’insuline semblent être, pour la plupart, dépendantes de la voie TOR. Par la suite, nous avons étudié l’effet de certains acides aminés comme la leucine (connue pour son effet « signal ») ainsi que la lysine et la méthionine (souvent ajoutées dans les aliments piscicoles riches en matières premières végétales afin d’atteindre l’équilibre en acides aminés). En présence d’insuline, la leucine, contrairement à la lysine et la méthionine, active la voie de signalisation TOR et régule l’expression de certains gènes (néoglucogenèse et lipogenèse) de façon similaire à un mélange d’acides aminés. Parallèlement, in vivo, nous avons étudié la régulation de l’expression des gènes du métabolisme intermédiaire lors d’un remplacement partiel ou total des huiles et farines de poisson par des produits végétaux dans l’aliment piscicole. Cette expérimentation a montré que, ni les voies de signalisation Akt/TOR, ni l’expression des gènes cibles ne sont affectés par ces nouveaux aliments. En conclusion, ces travaux ont montré que les acides aminés semblent jouer un rôle important dans la régulation de l’expression des gènes hépatiques du métabolisme intermédiaire chez la truite arc-en-ciel. / The objective of my PhD was to characterize the regulation of the intermediary metabolism related gene expression by dietary amino acids in the liver of rainbow trout. This work allowed us to characterize, for the first time in the liver of trout, the main proteins of the Akt/TOR signalling pathway and their regulations. In vitro results showed that a mixture of amino acids, in the presence or absence of insulin, is able to regulate the expression of numerous genes involved in lipolysis, gluconeogenesis and glycolysis. Such regulations induced by an amino acid mix together with insulin appear to be, at least partly, TOR-dependent. Afterwards, I studied the effect of specific amino acids known to be a signalling molecule (leucine) or having potential application as supplements to reach essential amino acid balance in plant ingredients-rich diet (lysine and methionine). In the presence of insulin, leucine, in contrast to lysine and methionine, is able to activate the TOR signalling pathway and regulate the expression of several genes involved in gluconeogenesis and lipogenesis in the same way as a mixture of amino acids. Furthermore, we studied in vivo, the effect of partial or total replacement of fish oil and fish meal by plant products in fish feed on .the regulation of intermediary metabolism related gene expression. This study showed that neither Akt/TOR signalling pathway nor the expression of the target genes were affected by such diets. In conclusion, these studies showed that amino acids seem to play an important role in the hepatic regulation of intermediary metabolism gene expression in the rainbow trout.
37

JAK/STAT signalling in the induction of the L-arginine-nitric oxide pathway in macrophages and vascular smooth muscle cells

Garr, Edmund Dzigbordi January 2014 (has links)
The production of Nitric Oxide (NO) under physiological conditions has beneficial roles in acting as a key signaling component of many biological processes as well as having an anti-microbial effect. However its effects following excess production by the inducible NO pathway is potentially detrimental in the pathogenesis of chronic inflammation including sepsis and several other inflammatory diseases. Understanding the mechanisms that regulate the expression of the inducible nitric oxide synthase (iNOS) responsible for producing the excessive amounts of NO in disease states is therefore critical. In this regards, experiments were carried out to identify the signaling pathways that may mediate this process, focusing specifically on the JAK/STAT cascade. The reason for selecting the latter is because our research group, amongst others, has carried out extensive work investigating other signaling pathways, including the mitogen activated kinases (MAPK). Moreover, studies have also been carried out in an attempt to identify the critical role of JAK/STAT signaling for iNOS induction. These studies however failed to conclusively demonstrate whether, as with the MAPKs, the JAK/STATs may also play an essential role. Furthermore there is indeed controversy in the literature with researchers unable to agree whether expression of iNOS does require JAK/STAT activation. Thus, the aim of the project described in this thesis was to establish unequivocally whether activation of the JAK/STATs preceeds induction of iNOS. The studies were extended to L-arginine transport as well because the latter is widely reported to be induced in parallel with iNOS and substrate supply to iNOS may be critical for sustained NO production. Changes in transporter activity as well as their expression profiles were assessed. All experiments were carried out in either rat aortic smooth muscle cells (RASMCs) or in the J774 macrophage cell line. These cell types were selected because RASMCs are one of the prime targets for induced NO production in vascular inflammation and the macrophages are involved in host defence, acting in part through NO production. To establish the role of JAK/STATs, pharmacological and molecular approaches were used. Pharmacologically, two inhibitors were used and these were AG490 and JAK inhibitor I. The former is reported to be a selective JAK2 inhibitor and the other blocks all known JAK proteins. The potential of the GTPases to regulate the induction of iNOS was also examined using selective inhibitor known to regulate these proteins. In addition to these drugs, siRNA targeting JAK2 was also exploited and western blotting was extensively used to detect expression of various proteins including iNOS, native and phosphorylated JAK2 and TYK2. Changes in iNOS activity was monitored by determining nitrite production using the Griess assay and L-arginine transport was monitored using tritiated arginine (L-[3H]arginine). RASMCs were treated with a combination of LPS (100 µg/ml) and IFN- (100 U/ml) and the macrophages with LPS (1 µg/ml) to induce iNOS and transporter activity. Consistent with previous reports, the above treatment of both cell types resulted in the expression of iNOS, production of NO and enhanced transport of L-arginine. These effects were not affected by AG490 but blocked by JAK inhibitor I. Furthermore, although both cell types expressed the key JAKs (JAK2 and TYK2), neither of these proteins were phosphorylated under conditions of induced NO production. Moreover, siRNA experiments showed that JAK2 expression could be abolished without any significant change in NO production, confirming that at least JAK2 may not be required for this process. Whether TYK2 is involved still remains to be resolved as the phosphor-protein could not be detected. However the conclusive siRNA knockdown studies could not be carried out due to time and cost constraints. Apart from iNOS and NO production, changes in induced L-arginine transport were also not significantly affected under the experimental conditions described above suggesting that like with iNOS, induction of L-arginine transport is independent of at least JAK2. Interestingly however, STAT-1 was phosphorylated and this was blocked by JAK inhibitor I but not AG490. Thus, STAT-1 activation may be essential but its activation may be independent of the JAKs. One possible alternate upstream activator of STAT-1 may be the GTPases. Indeed these proteins have been indicated to phosphorylate STAT-1 independent of the JAKs. However, in this project, inhibition of the GTPase pathway enhanced NO production and L-arginine transport suggesting that the GTPases downregulate these processes. In conclusion, the studies carried out in this thesis have shown that induction of iNOS, NO production and L-arginine transport in both RASMCs and J774 macrophages are independent of JAK2 but require STAT-1 activation which may be phosphorylated independently of the JAKs. The role of other JAKs such as TYK2 although unlikely, will need to be resolved using a more specific approach such as siRNA.
38

Um estudo renal das interaÃÃes entre uroguanilia, urodilatina e bradicinina na presenÃa dos bloqueadores da guanilato ciclase isatin e ODQ / A renal study of the interactions between uroguanilia, urodilatia and predry bradiciiana of the chokes of the guanilato ciclase isatin and ODQ

Messias SimÃes dos Santos Neto 23 April 2008 (has links)
Conselho Nacional de Desenvolvimento CientÃfico e TecnolÃgico / IntroduÃÃo: Guanilinas, peptÃdeos natriurÃticos (ANP e urodilatina) e bradicinina estÃo implicados na fisiopatologia, com potencial terapÃutico, do metabolismo do sal e da hipertensÃo. Objetivo: Estudar o mecanismo de aÃÃo e possÃveis interaÃÃes destes peptÃdeos, pelo emprego de inibidores da guanilato ciclase isatina e ODQ. MÃtodo: Foram realizadas experiÃncias no rim isolado e perfundido de rato com ferramentas farmacolÃgicas, isatina (IS; 0,3 ou 10&#956;M) ou com ODQ (37&#956;M), nos estudos com uroguanilina (UGN; 0,3 ou 0,6&#956;M), bradicinina (BK; 0,3 ou 0,9 ou 1,8nM) ou urodilatina (UD; 0,03nM). Investigaram-se ainda possÃveis interaÃÃes entre os referidos petÃdeos. Resultados: Isoladamente, IS (0,3&#956;M), ODQ, UGN (0,3&#956;M), BK (0,9 ou 0,3nM) nÃo interferiram signficativamente na presssÃo de perfusÃo, na diurese ou na reabsorÃÃo tubular fracionada renal de eletrÃlitos (sÃdio - %TNa+; potÃssio - %TK+; cloreto - %TCl- ). Nas condiÃÃes experimentais, ODQ mostrou-se eficaz (p<0,05) em inibir os efeitos de BK (1,8nM) sobre a pressÃo de perfusÃo (ODQ+BK120min: 111+3mmHg; BK120min: 139+5mmHg) e %TNa+ (ODQ+BK120min: 80+1%; BK120min: 76+2%). IS (3&#956;M) mostrou-se parcialmente eficaz em inibir efeitos de UGN (0,6&#956;M; IS+UGN90min: 76+2%; UGN90min: 72+2%) e de BK (1,8nM; IS+BK90min: 81+2%; BK60min: 0,76+2%) sobre %TNa+. UD (0,03nM90min: 86+2%; UGN+UD90min: 73+4%; p<0,05) potencializou a natriurese produzida por UGN (0,3&#956;M90min: 83+2%), cujos efeitos vasculares foram inibidos com BK (0,3nM90min: 104+5mmHg; UGN0,6&#956;M; 90min: 135+4mmHg; UGN+BK90min: 110+2mmHg). ConclusÃes: IS e ODQ comprovaram a participaÃÃo da via de sinalizaÃÃo NO-GMP no mecanismo de aÃÃo dos peptÃdeos estudados. A perfusÃo simultÃnea com mais de um peptÃdio, comprovou que hà interaÃÃes em suas diferentes vias de sinalizaÃÃo. / Introduction: Guanylins, natriuretic peptides (ANP and urodilatina) and bradykinin are involved in the pathophysiology, with therapeutic potential, of salt metabolism and hypertension. Objective: To study the mechanism of action and possible interactions of these peptides, with the employment of guanylate cyclase inhibitors isatina and ODQ. Method: Experiments were performed on isolated perfused rat kidney with pharmacological tools, isatin (IS; 0.3 or 10&#956;M) or with ODQ (37&#956;M), in studies with uroguanylin (UGN, 0.3 or 0.6&#956;M), bradykinin (BK , 0.3 or 0.9 or 1.8nM) or urodilatin (UD, 0.03nM). It was also investigated possible interactions between those peptides. Results: Alone, IS (0.3&#956;M), ODQ, UGN (0.3&#956;M), BK (0.9 or 0.3nM) did not interfere significantly in perfusion perfusion (PP), in diuresis or in fractional renal tubular reabsorption of electrolytes (sodium - %TNa+; potassium - %TK+; chloride - %TCl-). In experimental conditions, ODQ proved to be effective (p<0.05) in inhibiting the effects of BK (1.8nM) on the PP (ODQ+BK120min: 111+3mmHg; BK120min: 139+5mm Hg) and %TNa+ (ODQ+BK120min: 80+1%; BK120min: 76+2%). IS (3&#956;M) proved to be partially effective in inhibiting effects of UGN (0.6&#956;M; IS+UGN90min: 76+2%; UGN90min: 72+2%) and BK (1.8nM; IS+BK90min: 81+2%; BK60min: 0.76+2%) on %TNa+. UD (0.03nM90min: 86+2%; UGN+UD90min: 73+4%, p<0.05) increased the natriuresis produced by UGN (0.3&#956;M90min: 83+2%), whose vascular effects were inhibited with BK (0.3nM90min: 104+5mmHg; UGN0, 6&#956;M; 90min: 135+4mmHg; UGN+BK90min: 110+2mmHg). Conclusions: IS and ODQ confirmed the participation of the NO-GMP signalling pathway in the mechanism of action of peptides studied. The infusion simultaneously over a peptide, proved that there are interactions in their different signalling pathway.
39

Étude structurale et fonctionnelle d'un nouvel ARN non codant, Asgard, contrôlant l'autorenouvellement des cellules souches embryonnaires / Characterization of a novel non coding RNA, Asgard, which controls the self-renewal of mouse embryonic stem cells

Giudice, Vincent 18 December 2013 (has links)
Chez la souris, le Leukemia Inhibitory Factor (LIF) joue un rôle clé dans le maintien des cellules souches embryonnaires (ES) à l’état pluripotent. Le LIF agit en activant le facteur de transcription STAT3 via les kinases Jak. Cette activation est nécessaire et suffisante au maintien des cellules ES en autorenouvellement en présence de sérum. Une étude du transcriptome de STAT3 réalisée au laboratoire a permis d’identifier plusieurs gènes cibles de ce facteur, parmi lesquels plusieurs gènes inconnus. L’un d’eux, le gène 1456160_at, est fortement exprimé dans les cellules ES de souris et son expression diminue après induction de la différenciation. Ce gène a été appelé Asgard pour Another Self-renewal GuARDian. La caractérisation et le séquençage de ce gène ont permis de mettre en évidence qu'Asgard code pour un microARN. De nombreux microARNs jouent un rôle clé dans le maintien de l'autorenouvellement des cellules ES et dans le contrôle de la différenciation. Des expériences d’inhibition et de surexpression ont permis de montrer que Asgard est impliqué dans la régulation de la différenciation endoderme versus mésoderme. Des analyses préliminaires ont permis d’identifier Pbx3, FoxA2 et Sox17 comme cibles potentielles. Bien que les mécanismes d’action du microARN Asgard restent à confirmer, ce travail a permis d’identifier un nouveau gène clé de l'autorenouvellement des cellules ES de souris / The Leukemia Inhibitory Factor (LIF) activates the transcription factor STAT3, which results in the maintenance of mouse embryonic stem cells in the undifferentiated state by inhibiting mesodermal and endodermal differentiation. We identified several target genes of STAT3 by transcriptomic analysis. Among them, we focused on an unknown gene referred as 1456160_at on Affymetrix array. This gene is highly expressed in embryonic stem cells and its expression level decreases during differentiation. We named this gene Asgard for Another Self-renewal GuARDian. Its characterization and sequencing revealed that Asgard encodes for a microRNA sequence. Several microRNAs have been shown to play key role in the maintenance of self-renewal of mouse ES cells and in the control of differentiation. Inhibition and overexpression assays showed that Asgard inhibits endodermal differentiation in order to maintain self-renewal. Through preliminary analysis, we identified Pbx3, FoxA2 and Sox17 as potential targets of the microRNA Asgard. Our work enables us to identify a new key gene of self-renewal of mouse ES cells
40

Úloha Wnt signalizační dráhy v proliferaci a diferenciaci neurálních kmenových buněk neonatálního a dospělého myšího mozku / The role of the Wnt signalling pathway in proliferation and differentiation of neural stem cells in the neonatal and adult mouse brain

Koleničová, Denisa January 2016 (has links)
The canonical Wnt/β-catenin signalling pathway plays an important role in proliferation and differentiation of neural progenitors during embryogenesis as well as postnatally. In the present study, the effect of the Wnt signalling pathway on the differentiation potential of neonatal and adult neural stem cells (NS/PCs) isolated from subventricular zone (SVZ) of lateral ventricles and their membrane properties were studied eight days after the onset of in vitro differentiation. To manipulate Wnt signalling at different cellular levels, three transgenic mouse strains were used, which enabled inhibition or activation of the pathway using the Cre- loxP system. We showed that the activation of the Wnt signalling pathway leads to higher expression of β-catenin in both postnatal as well as adult NS/PCs, while Wnt signalling inhibition results in the opposite effect. To follow the fate of NS/PCs, the patch-clamp technique, immunocytochemistry, and Western blot were employed. After eight days of NS/PCs differentiation we identified three electrophysiologically and immunocytochemically distinct cell types of which incidence was significantly affected by the canonical Wnt signalling pathway, only in differentiated neonatal NS/PCs. Activation of this pathway suppressed gliogenesis, and promoted neurogenesis,...

Page generated in 0.1588 seconds