• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 117
  • 42
  • 30
  • 24
  • 9
  • 6
  • 4
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 270
  • 42
  • 35
  • 29
  • 27
  • 25
  • 24
  • 24
  • 22
  • 22
  • 22
  • 22
  • 20
  • 18
  • 17
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
161

Synthesis of Peropyrene and Tetracene Derivatives for Photochemical Applications

Rodríguez López, Marco Tulio 05 1900 (has links)
A novel route for the synthesis of the polycyclic aromatic hydrocarbon peropyrene (Pp) is reported along with the efforts to synthesize derivatives of Pp, 2,2′- and 5,5′-linked tetracene dimers as candidates for study as singlet fission materials in photovoltaic devices. Peropyrene was synthesized by the McMurry coupling conditions from phenalenone and low-valent titanium species. The crystal structure of Pp is formed by π-stacked molecular pairs in a herringbone arrangement. The direct functionalization of Pp was studied, and several indirect methods for the functionalization of Pp via phenalenone derivatives are reported. Nucleophilicly dependent, regioselective Michael addition pathways for phenalenone are described. Phenalenone forms a nucleophilic complex with bispinacolatodiboron and yields chiral 3,3′-linked phenalenone dimers and a bicyclo[3.2.1]octane derivative product of an unusual 3,4 addition. An active complex product of phenalenone and (dimethylphenylsilyl)boronic acid pinacolic ester forms Pp directly. The synthesis of 2,2′- and 5,5′-linked tetracene dimers led to the study of the reduction of 1-arylprop-2-yn-1-ol derivatives via TFA-catalyzed hydride transfer from triethylsilane. Substrates with terminal and TMS-protected alkynes showed silane exchange upon reduction. A TMS-protected, terminal alkyne became triethylsilyl-protected by about 50% whereas only triethylsilyl-protected, terminal alkyne was observed from the reduction of an unprotected, terminal alkyne. A new conformational polymorph of 1,4-bis(triisopropylsilyl)buta-1,3-diyne is reported. Five other rotamers are studied by density functional theory as possible candidates of conformational polymorphism by the analysis of torsional strain energies. The relative stabilities and interconversion equilibria of the seven conformational isomers are studied.
162

Pultruze biokompozitu na bázi lněných vláken / Pultrusion process of composite based on flax fibres

Hahn, Filip January 2015 (has links)
Theoretical part of master's thesis is focused on chemical treatments of natural fibers and their use as reinforcement material in polymer composites. Flax fibers were treated with two different silane coupling agents to improve their adhesion with polymer matrix. Nature of treatment was studied by using Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA) and scanning electron microscopy (SEM). Composites based on both treated and untreated flax fibers were prepared by pultrusion.technique. Mechanical properties and water absorption of prepared composites were evaluated.
163

Conjugate Additions and Transposition of the Allylic Alcohols of Enol Ethers of 1, 2-Cyclohexanedione.

Otoo, Barnabas 18 December 2010 (has links) (PDF)
A variety of protected enolic forms of 1, 2-cyclohexanedione was prepared as substrates for conjugate addition studies using organocopper reagents. The sequence involved the enol ether preparation via the enolate, alkylation with an organometalic reagent, and oxidative rearrangement with pyridinium chlorochromate followed by the conjugate addition reactions. Protection of 1, 2-cyclohexanedione was achieved by reacting with chloro tert-butyldimethyl silane and subjected to alkylation. Steric problems were encountered and so an alternative protective group the methoxymethyl acetal was prepared and studied. Alkylation of these derivatives was successful; however, the oxidation was problematic and although evidence for rearrangement was observed in one case, it did not provide the desired ketone.
164

Performance of Concrete Bridge Deck Surface Treatments

Nelsen, Tyler S. 22 April 2005 (has links) (PDF)
The purpose of this research was to identify the types of surface treatments available for use on concrete bridge decks and to determine which materials are most capable of providing long-term protection from contamination by chloride ions. The products addressed in this report primarily include urethanes, silicon-based sealers, and epoxies. An extensive literature review was conducted to document common overlay distresses, performance histories, and properties of specific surface treatment products currently available in the industry. In addition, three reports summarizing in-house experiments performed by the Utah Department of Transportation between 1995 and 2003 regarding various types of surface treatments were reviewed as part of this research. Finally, a nationwide questionnaire survey was conducted to investigate the state-of-the-practice with regard to surface treatment applications on bridge decks by state departments of transportation throughout the United States. Of the three types of materials addressed in this research, epoxy-based products have the greatest ability to protect concrete and remain uncracked with an acceptable level of skid resistance. Silicon-based products do not crack because they seep into the pores of the concrete, but they do not protect the concrete from the wearing effects of traffic or improve skid resistance. Published field studies indicate that urethane surface treatments do not resist the effects of traffic as well as epoxy-based materials, nor do they offer a substantial decrease in expense or health risk when compared to epoxy-based products. The results of the nationwide questionnaire clearly indicate that bridge deck surface treatments are valuable as both chloride barriers and skid-resistant wearing courses. No standard practice appears to exist with regard to timing of surface treatments, however. Some states arbitrarily apply surface treatments at 10 to 12 years after construction, other states wait until cracking has become fairly considerable before action is taken, and still other states apply surface treatments when the chloride content of the concrete reaches a certain level. Because concrete decks with significant cracking are not ideal substrates for polymer applications, surface treatments should be applied as preventive measures early in the service lives of bridge decks to effectively prevent chloride concentrations from reaching critical levels. This research suggests that epoxy-based surface treatments should be specified for concrete bridge decks when both a chloride barrier and improved skid resistance are desired. If a chloride barrier is all that is needed or desired, a silane surface treatment should be considered; silane treatments are less expensive and easier to apply than epoxy treatments. When a large amount of epoxy is to be mixed, automatic proportioning equipment that can precisely monitor and control the ratios of components should be employed.
165

Functionalization of Diamond and Its Application in High Performance Liquid Chromatography and Solid Phase Extraction

Saini, Gaurav 13 October 2010 (has links) (PDF)
The primary focus of my work was to chemically functionalize diamond as normal and reversed phases for solid phase extraction (SPE) and high performance liquid chromatography (HPLC). Diamond was functionalized with -NH2 groups via self-limiting adsorption of an amine-containing polymer, polyallylamine (PAAm), onto oxidized diamond particles. The chemical stability of these particles was improved by thermal curing or chemical crosslinking with 1,2,5,6-diepoxycyclooctane. The reversed phase material for SPE was synthesized by reacting amine-functionalized diamond particles with long chain alkyl and a perfluorinated isocyanate. Unlike commercially available silica, functionalized diamond particles were stable under extreme pH conditions (pH 0-14). Functionalized diamond particles were used for SPE, although their lack of porosity resulted in poor analyte capacity. To create materials with greater surface area, core-shell diamond particles were synthesized via layer-by-layer deposition of PAAm and nanodiamond onto solid microdiamond. These particles had higher surface areas than solid diamond particles, and their application in SPE and HPLC was demonstrated. As a related project, I demonstrated microlens array patterning (MAP) for selective adsorption of PAAm during microarray fabrication. Initially, alkyl monolayer terminated silicon surfaces were photopatterned with thousands of wells using a microlens array. PAAm was then deposited in the presence of a cationic surfactant to limit nonspecific adsorption of PAAm. Finally, reactions of selectively adsorbed PAAm were shown with glutaric anhydride, phenylenediisothiocyanate, biotin NHS-ester and an oligonucleotide (DNA). My third project concerned the synthesis of an abrasion resistant hydrophobic coating on the surface of nylon and silicon oxide substrates using chemical vapor deposition (CVD) of two silanes. The synthesis consists of four steps: 1) plasma oxidation of the substrate, 2) treatment with 3-isocyanatopropyltrimethoxysilane, 3) exposure of the treated surfaces to water vapors, and 4) treatment with a perfluorinated silane to make the surfaces hydrophobic. The coating is not visible to the eye and does not change the feel of the surface. Time-of-flight secondary ion mass spectrometry (ToF-SIMS), X-ray photoelectron spectroscopy (XPS), spectroscopic ellipsometry, contact angle goniometry, scanning electron microscopy (SEM), environmental scanning electron microscopy (ESEM), Rutherford backscattering spectroscopy (RBS) and nuclear reaction analysis (NRA) were used to characterize the resulting materials.
166

Characterization of Dispersion and Residual Stress in Nanoparticle Reinforced Hybrid Carbon Fiber Composites

Selimov, Alex 01 January 2016 (has links)
Hybrid carbon fiber reinforced composites are a new breed of materials that are currently being explored and characterized for next generation aerospace applications. Through the introduction of secondary reinforcements, such as alumina nanoparticles, hybrid properties including improved mechanical properties and stress sensing capabilities can be achieved. In order to maximize these properties, it is necessary to achieve a homogeneous dispersion of particulate filler. Utilizing the photoluminescent properties of alumina, it is possible to compare local levels of particle concentration through emission intensities as a way to determine the effectiveness of the tested manufacturing parameters in increasing material homogeneity. Parameters of these photoluminescence emissions have been established to be stress dependent, which allows for in situ residual stress measurements. It is shown here that the application of silane coupling agents as particle surface treatments improves particle dispersion when compared to untreated samples. Reactive silane coupling agent (RSCA) treatments were found to provide for greater dispersion improvements when compared to non-reactive silane coupling agents (NRSCA). Higher resolution investigations into these samples found that treatment with a reactive coupling agent altered the stress state of particles concentrated around the fiber from a tensile stress state to a compressive stress state. This is proposed to result from bonding of the reactive groups on the coupling agent to the organic groups on the carbon fibers which adjusts the stress state of the particle. Future mechanical tests will verify the effects of the particle surface functionalization treatments on mechanical properties of the composites.
167

Water Based Silane Coupling Agents for Bonding Polyacrylate Rubber to Aluminum

Sukumar, Ramakrishnan 13 July 2005 (has links)
No description available.
168

INTEGRAL EPOXY RESIN-SILANE PRIMER SYSTEM FOR HOT-DIP GALVANIZED STEEL

SURYANARAYANAN, KARTHIK January 2005 (has links)
No description available.
169

SCRATCH BEHAVIOR OF POLY(carbonate) FILM/SUBSTRATE SYSTEMS

WIRASATE, SUPA January 2005 (has links)
No description available.
170

ENVIRONMENTALLY-COMPLIANT NOVOLAC SUPERPRIMERS FOR CORROSION PROTECTION OF ALUMINUM ALLOYS

ASHIRGADE, AKSHAY A. 02 October 2006 (has links)
No description available.

Page generated in 0.068 seconds