• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Femtosecond laser writing of nanogratings on the surface of fused silica

Liang, Feng 19 April 2018 (has links)
Lorsqu’un faisceau laser femtoseconde est fortement focalisé sur des matériaux transparents, une ionisation en cascade peut se produire suite à l’intense ionisation du champ induit par celui-ci. Une fraction de l’énergie laser est absorbée et transférée dans le support produisant un échauffement local. La température à l’intérieur de la zone d’irradiation s’élèvera au point de fusion ou d’ébullition, selon la fluence de l’impulsion incidente et les propriétés du matériau. En conséquence, une légère modification du matériau, la formation de nano-réseaux ou des dommages complexes peuvent se produire. L’explosion de Coulomb peut participer au processus d’enlèvement de matière lorsque le faisceau laser est fortement focalisé sur la surface. Dans cette thèse, nous allons nous concentrer sur la formation de nano-réseaux sur la surface de la silice fondue. Nous mesurons la fluence de l’impulsion nécessaire pour induire des nano-réseaux de surface pour différents espacements entre des impulsions consécutives, pour découvrir et quantifier l’effet d’incubation dans le processus de formation de nano-réseaux. Nous proposons également une équation d’incubation modifiée (seuil d’ablation en fonction de l’espacement entre les impulsions). À l’aide d’un SEM, nous examinons le changement structurel de la morphologie sur la surface induite par la combinaison de différents paramètres d’écriture tels que : l’énergie par impulsion/fluence, l’espacement entre les impulsions et la profondeur de la lumière focalisée sous la surface. Nous montrons ainsi l’évolution des nano-fentes dans le cas statique et pour une petite gamme de fluence d’impulsion et démontrons que des nano-réseaux uniformes peuvent être obtenus lorsque la fluence de l’impulsion est légèrement au-dessus du seuil d’ablation et que la largeur et l’espacement des nano-réseaux dépendent de l’espacement entre les impulsions et de leur fluence. Nous proposons également un nouveau modèle qui inclut les effets de répartition de l’intensité locale et d’incubation. L’évolution progressive de maxima locaux et la formation de nouvelle paires de nanogrooves (cas statique) ou de son autoréplication (cas de numérisation) sur des emplacements spécifiques est en fait la physique derrière le processus de formation qui est fidèlement reproduit dans l’expérience. Jusqu’à maintenant, aucun modèle n’a réussi à bien représenter les phénomènes observés. Finalement, nous présentons les applications potentielles de l’écriture directe d’un certain nombre contrôlable de nanocanaux et nano-réseaux à grande surface. / When a femtosecond laser beam is tightly focused onto transparent materials, strong field ionization followed by avalanche ionization may occur, and a fraction of laser energy is absorbed and transferred into the lattice resulting in local heating. The temperature within the irradiation zone will rise up to the melting or boiling point depending on the incident pulse fluence and material properties. As a result, either smooth modification, or well-shaped nanogratings or complex damage may occur. Coulomb explosion may also participate in the material removal process. In this thesis, we focus on the nanograting inscription on the surface of fused silica. We measure the pulse fluence which is required to induce surface nanogratings for different pulse-to-pulse spacing, uncover and quantify the incubation effect in the nanograting inscription process, and propose a modified incubation equation (ablation threshold as a function of pulse-topulse spacing). Using a scanning electron microscope, we examine the structural change on the surface induced by the combination of different writing parameters such as the pulse energy/fluence, pulse-to-pulse spacing and the depth of the focused light below the surface. We show the shot-to-shot evolution of nanogrooves in the static case for a small range of pulse fluence, and demonstrate that well-shaped nanogratings can be obtained with pulse fluence slightly above the reduced ablation threshold, and that the width and spacing of the nanogratings depend on the pulse-to-pulse spacing and pulse fluence. In particular, we propose a new model which consists of local intensity distribution and incubation effect. The progressive evolution of new local maxima and in turn the formation of new nanogrooves in pairs (static case) or in a self-replicating way (scanning case) at specific locations is in fact the physical focus behind the nanograting inscription, as is faithfully reproduced by the experiment. No previously reported model has ever been successful in that respect. Finally, we discuss and demonstrate the potential applications in direct writing of a controllable number of nanochannels and large-area nanogratings.

Page generated in 0.1113 seconds