Spelling suggestions: "subject:"ablation laser (fabrication)"" "subject:"ablation laser (abrication)""
1 |
Utilisation du procédé sol-gel pour la détermination élémentaire à l'état de trace par spectrométrie de plasma optique induit par laser /Brouard, Danny. January 2008 (has links) (PDF)
Thèse (M.Sc.)--Université Laval, 2008. / Bibliogr.: f. 119-123. Publié aussi en version électronique dans la Collection Mémoires et thèses électroniques.
|
2 |
Analyse chimique par ablation laser et caractérisation du plasma induit par laser par shadowgraphy /Gravel, Jean-François. January 2009 (has links) (PDF)
Thèse (Ph. D.)--Université Laval, 2009. / Bibliogr.: f. 127-129. Publié aussi en version électronique dans la Collection Mémoires et thèses électroniques.
|
3 |
Analyse chimique par ablation laser et caractérisation du plasma induit par laser par shadowgraphyGravel, Jean-François 16 April 2018 (has links)
Cette thèse porte sur l'utilisation et la caractérisation de l' ablation laser et du plasma induit par laser dans un contexte d'analyse chimique. Différents efforts d' optimisation des techniques d' ablation laser couplée à la spectrométrie d' ionisation assistée par laser (LALEI) et de spectrométrie de plasma induit par laser (LIBS) ont mené à l'obtention d' excellents résultats analytiques pour des échantillons poudreux. Divers aspects importants en analyse, comme la possibilité d' utiliser des étalons solides à concentration ajustable, l'importance de l'homogénéité dans la distribution des analytes, l'importance de disposer d' étalons dont la matrice est similaire à celle des échantillons ou d'être en mesure de corriger les signaux obtenus avec des matrices différentes et l'influence de l'environnement gazeux sur la dynamique d'expansion du plasma et sur la rapidité de perçage d'une cible, ont été étudiés. Grâce entre autre à la technique de shadowgraphy (qui a aussi servi à évaluer l' influence de l'environnement gazeux), l'éjection de particules a été observée lors des premières microsecondes suivant l'ablation de cibles poudreuses préparées· sous formes de pastilles et a permis de comparer trois types d'étalons solides préparés dans le laboratoire à partir de sol-gels.
|
4 |
Production et caractérisation de nanoparticules de Ti3+: Al2O3 par ablation laserPaquet, Stéphan 19 April 2018 (has links)
L’ablation laser est une technique éprouvée pour la fabrication de nanoparticules qui possèdent la composition et les propriétés du matériel original. La plupart des expériences sont réalisées en focalisant des impulsions laser UV à la surface d’une cible monoatomique, soit un métal ou un semi-conducteur. La technique présentée se concentre plutôt sur l’utilisation d’un laser femtoseconde pour faire l’ablation de saphir dopé au titane, Ti3+: Al2O3 ou Ti: saphir. Le Ti: saphir est employé comme milieu de gain dans plusieurs oscillateurs ou amplificateurs laser et possède comme avantage la production d’impulsion ultrabrèves dans l’infrarouge proche. Dans le cadre de ce mémoire, la production de nanoparticules de Ti: saphir par ablation laser est réalisée à l’aide de deux méthodes différentes, la première étant l’ablation dans une enceinte à pression fixe et la deuxième par ablation et transport à l’aide d’un gaz dans une zone à haute température puis par récupération des particules par impact. Des observations au MEB et au MET permettent d’affirmer que les particules et agrégats de particules produits ont une taille qui varie entre 5 et 200 nm, avec quelques particules de plus grande taille. Les particules produites à pression fixe semblent amorphes et possèdent un spectre de fluorescence décalé vers le bleu, tandis que les particules transportées dans la zone à haute température semblent mieux cristallisées et possèdent un spectre qui se rapproche davantage de celui du matériel original. Des expériences de production de nanoparticules de rubis (Cr3+: Al2O3) ont également été réalisées à l’aide de la méthode de combustion de nitrates. Cette méthode a permis de produire facilement de grandes quantités de particules significativement agglomérées avec une fluorescence très forte. / Pulsed laser ablation is a well-known technique for the production of nanoparticles that possess the same composition and properties as of the original material. Most of the experiments are done by focusing UV laser pulses on the surface of a monoatomic metallic or semiconductor targets. The technique presented in this work focuses on the use of femtosecond laser pulses to initiate the ablation of titanium doped sapphire, Ti3+: Al2O3 or Ti:sapphire. Ti:sapphire is a well-known laser gain medium, commonly used in femtosecond oscillators or amplificators. In the course of this thesis, pulsed laser ablation of Ti: sapphire and nanoparticle production were made possible by the use of two different methods. The first experiments took place in a vacuum chamber under constant pressure. The second setup used a flow of low pressure helium gas to transport the particles in a high temperature environment before they were collected. SEM and TEM observations lead to the conclusion that the produced particles and particle agglomerates were between 5 and 200 nm in diameter, with a few larger particles. Particles produced in a fixed pressure seem amorphous and their fluorescence spectra are generally blue-shifted. Particles that were passed in the high temperature volume seem to have undergone better crystallization and their spectra are closer to the spectrum of bulk Ti: sapphire. Cr3+: Al2O3 (ruby) nanoparticles were also produced with the low temperature nitrate combustion synthesis method. These experiments produced large quantities of highly agglomerated nanoparticles with very strong fluorescent properties. The fluorescent properties are similar of those of bulk ruby.
|
5 |
Ablation laser et croissance de réseaux de surfaceDéziel, Jean-Luc 23 April 2018 (has links)
Tableau d'honneur de la Faculté des études supérieures et postdorales, 2015-2016 / La formation des réseaux de surface, ou laser-induced periodic surface structures (LIPSSs), à l’aide d’une source laser pulsée est étudiée avec la théorie de Sipe-Drude, d’abord analytiquement, puis avec la méthode numérique finite-difference time-domain (FDTD). Les LIPSSs sont des structures nanométriques sinusoïdales pouvant être catégorisées selon leur orientation par rapport à la direction de polarisation du laser incident et en fonction de leur période Λ par rapport à la longueur d’onde du laser λ. Avec la méthode FDTD, nous trouvons, dans une région de l’espace paramétrique jamais explorée, qu’une impulsion laser polarisée linéairement peut interagir avec une surface rugueuse de façon à faire croître des structures bidimensionnelles ayant une période de Λ ∼ λ dans les orientations parallèle et orthogonale à la direction de polarisation. Par contre, ce modèle ne peut expliquer la forte organisation et régularité des structures dans le domaine spatial, tel qu’observé dans les expériences. Permettre l’auto-organisation des structures avec un mécanisme de rétroaction inter-impulsion est une solution possible afin de simuler la croissance de LIPSSs fortement organisés d’une impulsion laser à la suivante. Récemment proposée, cette méthode utilise un processus d’ablation non physique afin de tenir compte qualitativement de l’éjection de matériau entre deux impulsions laser. Ce nouveau modèle peut reproduire une grande variété de LIPSSs avec une forte régularité spatiale, mais échoue toujours à simuler la croissance de l’amplitude de certains types de structures. Nous suggérons que ces structures restantes peuvent croître en considérant un mécanisme inverse, l’expansion. En combinant ablation et expansion, nous avons simulé avec succès un plus grand nombre de types de LIPSSs. / The formation of laser-induced periodic surface structures (LIPSSs) using pulsed laser source is studied on the basis of the Sipe-Drude theory solved, first analytically, then with a finitedifference time-domain (FDTD) scheme. LIPSSs consist of wavy nanometric structures and can be categorized depending on their orientation with respect to the incident laser polarization and their periodicity Λ with respect to the incident laser wavelength λ. With our FDTD solver, we find, in as yet unexplored regions of parameter space, that a linearly polarized laser pulse can interact with a rough surface such that bidimensional structures could grow with both parallel and perpendicular periodicity of Λ ∼ λ. However, this theory cannot predict the strong organization and regularity in the space domain, as observed in the experiments. Allowing self-organization in the model with an interpulse feedback mechanism is a possible solution to simulate the growth of strongly organized LIPSSs from one laser pulse to the next. This recently proposed method uses a non-physical ablation process to qualitatively account for material removal between two laser pulses. This new model can reproduce a large variety of LIPSSs with a strong spatial regularity, but still fails to simulate amplitude growth of some of the structures. We suggest that those remaining structures can grow by considering an inverse mechanism, an expansion process. By combining ablation and expansion mechanisms, we have successfully simulated the growth of a large class of LIPSSs.
|
6 |
Femtosecond laser writing of nanogratings on the surface of fused silicaLiang, Feng 19 April 2018 (has links)
Lorsqu’un faisceau laser femtoseconde est fortement focalisé sur des matériaux transparents, une ionisation en cascade peut se produire suite à l’intense ionisation du champ induit par celui-ci. Une fraction de l’énergie laser est absorbée et transférée dans le support produisant un échauffement local. La température à l’intérieur de la zone d’irradiation s’élèvera au point de fusion ou d’ébullition, selon la fluence de l’impulsion incidente et les propriétés du matériau. En conséquence, une légère modification du matériau, la formation de nano-réseaux ou des dommages complexes peuvent se produire. L’explosion de Coulomb peut participer au processus d’enlèvement de matière lorsque le faisceau laser est fortement focalisé sur la surface. Dans cette thèse, nous allons nous concentrer sur la formation de nano-réseaux sur la surface de la silice fondue. Nous mesurons la fluence de l’impulsion nécessaire pour induire des nano-réseaux de surface pour différents espacements entre des impulsions consécutives, pour découvrir et quantifier l’effet d’incubation dans le processus de formation de nano-réseaux. Nous proposons également une équation d’incubation modifiée (seuil d’ablation en fonction de l’espacement entre les impulsions). À l’aide d’un SEM, nous examinons le changement structurel de la morphologie sur la surface induite par la combinaison de différents paramètres d’écriture tels que : l’énergie par impulsion/fluence, l’espacement entre les impulsions et la profondeur de la lumière focalisée sous la surface. Nous montrons ainsi l’évolution des nano-fentes dans le cas statique et pour une petite gamme de fluence d’impulsion et démontrons que des nano-réseaux uniformes peuvent être obtenus lorsque la fluence de l’impulsion est légèrement au-dessus du seuil d’ablation et que la largeur et l’espacement des nano-réseaux dépendent de l’espacement entre les impulsions et de leur fluence. Nous proposons également un nouveau modèle qui inclut les effets de répartition de l’intensité locale et d’incubation. L’évolution progressive de maxima locaux et la formation de nouvelle paires de nanogrooves (cas statique) ou de son autoréplication (cas de numérisation) sur des emplacements spécifiques est en fait la physique derrière le processus de formation qui est fidèlement reproduit dans l’expérience. Jusqu’à maintenant, aucun modèle n’a réussi à bien représenter les phénomènes observés. Finalement, nous présentons les applications potentielles de l’écriture directe d’un certain nombre contrôlable de nanocanaux et nano-réseaux à grande surface. / When a femtosecond laser beam is tightly focused onto transparent materials, strong field ionization followed by avalanche ionization may occur, and a fraction of laser energy is absorbed and transferred into the lattice resulting in local heating. The temperature within the irradiation zone will rise up to the melting or boiling point depending on the incident pulse fluence and material properties. As a result, either smooth modification, or well-shaped nanogratings or complex damage may occur. Coulomb explosion may also participate in the material removal process. In this thesis, we focus on the nanograting inscription on the surface of fused silica. We measure the pulse fluence which is required to induce surface nanogratings for different pulse-to-pulse spacing, uncover and quantify the incubation effect in the nanograting inscription process, and propose a modified incubation equation (ablation threshold as a function of pulse-topulse spacing). Using a scanning electron microscope, we examine the structural change on the surface induced by the combination of different writing parameters such as the pulse energy/fluence, pulse-to-pulse spacing and the depth of the focused light below the surface. We show the shot-to-shot evolution of nanogrooves in the static case for a small range of pulse fluence, and demonstrate that well-shaped nanogratings can be obtained with pulse fluence slightly above the reduced ablation threshold, and that the width and spacing of the nanogratings depend on the pulse-to-pulse spacing and pulse fluence. In particular, we propose a new model which consists of local intensity distribution and incubation effect. The progressive evolution of new local maxima and in turn the formation of new nanogrooves in pairs (static case) or in a self-replicating way (scanning case) at specific locations is in fact the physical focus behind the nanograting inscription, as is faithfully reproduced by the experiment. No previously reported model has ever been successful in that respect. Finally, we discuss and demonstrate the potential applications in direct writing of a controllable number of nanochannels and large-area nanogratings.
|
7 |
Utilisation du procédé sol-gel pour la détermination élémentaire à l'état de trace par spectrométrie de plasma optique induit par laserBrouard, Danny 13 April 2018 (has links)
L'utilisation des sol-gels comme matrices solides pour l'analyse de trace par ablation laser comme méthode d'échantillonnage pour des échantillons poudreux a été démontrée. L'homogénéité intrinsèque du procédé sol-gel permet d'augmenter la précision des mesures en maximisant la répétabilité du signal analytique d'une impulsion à l'autre pour des cibles solides faites à partir de poudres. Par contre, dans le but d'obtenir des résultats dotés d'une justesse et d'une précision acceptables pour l'analyse d'échantillons réels utilisant des étalons de mesure en spectrométrie de plasma optique induit par laser, il est important que la sensibilité de détection ne varie pas significativement entre les échantillons et les étalons. Cette similarité est souvent difficile à obtenir puisque les échantillons et les étalons de mesure sont habituellement préparés à partir de matériaux de différentes origines, ce qui induit souvent des différences au niveau du taux d'ablation. L'utilisation des sol-gels comme matrices solides pour la préparation d'étalons de mesure permet de remédier à ce problème. En effet, ils offrent la possibilité de choisir le précurseur le plus approprié afin de faire coïncider au maximum la matrice des étalons avec celles des échantillons. Dans ce projet, le procédé sol-gel a été utilisé pour réaliser la détermination d'élément présent à l'état de trace dans des échantillons d'alumine en poudre. Pour ce faire, nous avons combiné le procédé sol-gel à la méthode des ajouts dosés dans le but de compenser pour les effets de matrice provenant des différences entre les propriétés physiques et/ou le taux d'ablation entre les étalons de mesure et les échantillons. Nous avons également étudié les propriétés des différents types de pastilles sol-gels synthétisées au cours de ce projet et nous avons évalué leur potentiel analytique en termes de répétabilité et de sensibilité de détection. Finalement, nous avons comparé l'homogénéité de chacune d'entre elles par microscopie à balayage électronique en mode électrons rétro-diffusés. / The use of sol-gels as solid matrices for trace analysis of pelletized powders by laser ablation sampling has been demonstrated recently. The intrinsically high homogeneity of the sol-gel process leads to more precise measurements by maximizing the shot-to-shot signal repeatability from pelletized sample targets. However, in order to obtain results of acceptable accuracy and precision in the analysis of real samples by laser induced breakdown spectrometry using external calibration standards, it is desirable that analytical detection sensitivity does not vary significantly between the calibration standards and the samples. This is often hard to achieve because samples and standards are usually prepared using materials of different origins, and hence display different ablation rates. The use of sol-gels as solid matrices for the preparation of calibration standards allows one to fulfill this requirement by offering the possibility to choose the proper reaction precursor in order to tune the matrix composition and hence approximate the ablation behavior of the samples. In this project, the sol-gel process has been used to approximate the sample matrix of powdered alumina samples and, together with the standard addition method, to compensate for physical matrix effects originating from differences in physical properties and/or ablation rate between calibration standards and samples. The properties of an alumina-like sol-gel-based matrix were studied in terms of signal repeatability and detection sensitivity, and the behaviour of such sol-gel-based solid pellets regarding ablation and vaporization was studied by Scanning Electron Microscopy (SEM).
|
Page generated in 0.1301 seconds