Spelling suggestions: "subject:"siliciumkarbid"" "subject:"siliciumcarbid""
1 |
Nanostructured Porous High Surface Area Ceramics for Catalytic ApplicationsKrawiec, Piotr 30 January 2007 (has links) (PDF)
In the present work new methods were developed for preparation of novel nanosized and nanostructured ceramic materials. Ordered mesoporous silica SBA-15 was found to be useful as a hard template for the nanocasting of silicon carbide and allowed the preparation of high temperature stable mesoporous silicon carbide ceramics. Chemical vapor infiltration of SBA-15 with dimethyldichlorosilane at elevated temperatures yields SiC/SBA-15 nanocomposites. The subsequent HF treatment of those composites resulted in silica removal and preparation of mesoporous silicon carbide with surface areas between 410 and 830 m2g-1 and high mesopore volume (up to 0.9 cm3g-1). The pore size (between 3 and 7nm in diameter) and surface area of mesoporous silicon carbide were controlled by adjusting the infiltration conditions (time, atmosphere). The mesoporous silicon carbide prepared via this method showed high structural thermal stability at 1300 oC, exceeding that of the SBA-15 template. However, the ordering on the mesoscopic scale was low. Nevertheless, highly ordered mesoporous silicon carbide materials were obtained via polymer melt infiltration in SBA-15. The low molecular weight polycarbosilane used as a preceramic precursor was converted at 1300 oC to silicon carbide inside the SBA-15, and after subsequent silica removal by HF, a highly ordered mesoporous material was obtained. Ordered mesoporous silicon carbide prepared by the methods reported here, may be an interesting material as a support due to its high temperature stability, chemical inertness, high thermal conductivity and semiconductor properties. In contrast to the nanocasting approach, based on the complete pore filling, also a new in-situ procedure for the preparation of finely dispersed metal and metal oxide particles inside ordered mesoporous silica was developed. A swelling agent (toluene) was used to deliver a hydrophobic platinum precursor into the surfactant micelles before addition of silica source. Such an in-situ method resulted in very high platinum incorporation (80-100%), not achieved for any other in-situ preparation procedures. Additionally, the presence of platinum allowed to decrease the template removal temperatures. Moreover, the method was also extended to other metal or metal oxide/ordered mesoporous silica systems. This may be especially interesting for the preparation of ordered mesoporous materials with low melting points, where typically the structure collapses during the high temperature calcinations process. The in-situ synthesized V2O5/MCM-41 materials were used to prepare VN/MCM-41 composites via nitridation in ammonia at 800oC. This method allowed to prepare highly dispersed, X-ray amorphous vanadium nitride species, with high activity in the propane dehydrogenation. Compared to nitridation of supported vanadium oxide prepared via the ex-situ procedure, in-situ synthesized materials showed similar catalytic activity, in spite of having significantly lower vanadium loading. As an alternative for the preparation of supported nitride materials, a novel preparation procedure of bulk not supported nanocrystalline vanadium nitride with high surface area was presented. Instead of pure oxide powder (which was typically used in the preparation of high surface area vanadium nitride catalysts), a macroporous amine intercalated V2O5 was used as the starting material. The obtained nitride consisted of small crystallites and had a surface area up to 198 m2g-1. Moreover, this foam-derived VN showed significantly improved activity as a catalyst in propane dehydrogenation. This novel preparation method could also be extended to other systems such as ternary VMoxNy nitrides.
|
2 |
Nanostructured Porous High Surface Area Ceramics for Catalytic ApplicationsKrawiec, Piotr 20 December 2006 (has links)
In the present work new methods were developed for preparation of novel nanosized and nanostructured ceramic materials. Ordered mesoporous silica SBA-15 was found to be useful as a hard template for the nanocasting of silicon carbide and allowed the preparation of high temperature stable mesoporous silicon carbide ceramics. Chemical vapor infiltration of SBA-15 with dimethyldichlorosilane at elevated temperatures yields SiC/SBA-15 nanocomposites. The subsequent HF treatment of those composites resulted in silica removal and preparation of mesoporous silicon carbide with surface areas between 410 and 830 m2g-1 and high mesopore volume (up to 0.9 cm3g-1). The pore size (between 3 and 7nm in diameter) and surface area of mesoporous silicon carbide were controlled by adjusting the infiltration conditions (time, atmosphere). The mesoporous silicon carbide prepared via this method showed high structural thermal stability at 1300 oC, exceeding that of the SBA-15 template. However, the ordering on the mesoscopic scale was low. Nevertheless, highly ordered mesoporous silicon carbide materials were obtained via polymer melt infiltration in SBA-15. The low molecular weight polycarbosilane used as a preceramic precursor was converted at 1300 oC to silicon carbide inside the SBA-15, and after subsequent silica removal by HF, a highly ordered mesoporous material was obtained. Ordered mesoporous silicon carbide prepared by the methods reported here, may be an interesting material as a support due to its high temperature stability, chemical inertness, high thermal conductivity and semiconductor properties. In contrast to the nanocasting approach, based on the complete pore filling, also a new in-situ procedure for the preparation of finely dispersed metal and metal oxide particles inside ordered mesoporous silica was developed. A swelling agent (toluene) was used to deliver a hydrophobic platinum precursor into the surfactant micelles before addition of silica source. Such an in-situ method resulted in very high platinum incorporation (80-100%), not achieved for any other in-situ preparation procedures. Additionally, the presence of platinum allowed to decrease the template removal temperatures. Moreover, the method was also extended to other metal or metal oxide/ordered mesoporous silica systems. This may be especially interesting for the preparation of ordered mesoporous materials with low melting points, where typically the structure collapses during the high temperature calcinations process. The in-situ synthesized V2O5/MCM-41 materials were used to prepare VN/MCM-41 composites via nitridation in ammonia at 800oC. This method allowed to prepare highly dispersed, X-ray amorphous vanadium nitride species, with high activity in the propane dehydrogenation. Compared to nitridation of supported vanadium oxide prepared via the ex-situ procedure, in-situ synthesized materials showed similar catalytic activity, in spite of having significantly lower vanadium loading. As an alternative for the preparation of supported nitride materials, a novel preparation procedure of bulk not supported nanocrystalline vanadium nitride with high surface area was presented. Instead of pure oxide powder (which was typically used in the preparation of high surface area vanadium nitride catalysts), a macroporous amine intercalated V2O5 was used as the starting material. The obtained nitride consisted of small crystallites and had a surface area up to 198 m2g-1. Moreover, this foam-derived VN showed significantly improved activity as a catalyst in propane dehydrogenation. This novel preparation method could also be extended to other systems such as ternary VMoxNy nitrides.
|
Page generated in 0.0411 seconds