• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • 1
  • Tagged with
  • 6
  • 6
  • 6
  • 5
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Adsorption-Induced Deformation of Nanoporous Materials — in-situ Dilatometry and Modeling / Adsorptionsinduzierte Deformation nanoporöser Materialien — in-situ Dilatometrie und Modellierung

Balzer, Christian January 2018 (has links) (PDF)
The goal of this work is to improve the understanding of adsorption-induced deformation in nanoporous (and in particular microporous) materials in order to explore its potential for material characterization and provide guidelines for related technical applications such as adsorption-driven actuation. For this purpose this work combines in-situ dilatometry measurements with in-depth modeling of the obtained adsorption-induced strains. A major advantage with respect to previous studies is the combination of the dilatometric setup and a commercial sorption instrument resulting in high quality adsorption and strain isotherms. The considered model materials are (activated and thermally annealed) carbon xerogels, a sintered silica aerogel, a sintered hierarchical structured porous silica and binderless zeolites of type LTA and FAU; this selection covers micro-, meso- and macroporous as well as ordered and disordered model materials. All sample materials were characterized by scanning electron microscopy, gas adsorption and sound velocity measurements. In-situ dilatometry measurements on mesoporous model materials were performed for the adsorption of N2 at 77 K, while microporous model materials were also investigated for CO2 adsorption at 273 K, Ar adsorption at 77 K and H2O adsorption at 298 K. Within this work the available in-situ dilatometry setup was revised to improve resolution and reproducibility of measurements of small strains at low relative pressures, which are of particular relevance for microporous materials. The obtained experimental adsorption and strain isotherms of the hierarchical structured porous silica and a micro-macroporous carbon xerogel were quantitatively analyzed based on the adsorption stress model; this approach, originally proposed by Ravikovitch and Neimark, was extended for anisotropic pore geometries within this work. While the adsorption in silica mesopores could be well described by the classical and analytical theory of Derjaguin, Broekhoff and de Boer, the adsorption in carbon micropores required for comprehensive nonlocal density functional theory calculations. To connect adsorption-induced stresses and strains, furthermore mechanical models for the respective model materials were derived. The resulting theoretical framework of adsorption, adsorption stress and mechanical model was applied to the experimental data yielding structural and mechanical information about the model materials investigated, i.e., pore size or pore size distribution, respectively, and mechanical moduli of the porous matrix and the nonporous solid skeleton. The derived structural and mechanical properties of the model materials were found to be consistent with independent measurements and/or literature values. Noteworthy, the proposed extension of the adsorption stress model proved to be crucial for the correct description of the experimental data. Furthermore, it could be shown that the adsorption-induced deformation of disordered mesoporous aero-/xerogel structures follows qualitatively the same mechanisms obtained for the ordered hierarchical structured porous silica. However, respective quantitative modeling proved to be challenging due to the ill-shaped pore geometry of aero-/xerogels; good agreement between model and experiment could only be achieved for the filled pore regime of the adsorption isotherm and the relative pressure range of monolayer formation. In the intermediate regime of multilayer formation a more complex model than the one proposed here is required to correctly describe stress related to the curved adsorbate-adsorptive interface. Notably, for micro-mesoporous carbon xerogels it could be shown that micro- and mesopore related strain mechanisms superimpose one another. The strain isotherms of the zeolites were only qualitatively evaluated. The result for the FAU type zeolite is in good agreement with other experiments reported in literature and the theoretical understanding derived from the adsorption stress model. On the contrary, the strain isotherm of the LTA type zeolite is rather exceptional as it shows monotonic expansion over the whole relative pressure range. Qualitatively this type of strain isotherm can also be explained by the adsorption stress model, but a respective quantitative analysis is beyond the scope of this work. In summary, the analysis of the model materials' adsorption-induced strains proved to be a suitable tool to obtain information on their structural and mechanical properties including the stiffness of the nonporous solid skeleton. Investigations on the carbon xerogels modified by activation and thermal annealing revealed that adsorption-induced deformation is particularly suited to analyze even small changes of carbon micropore structures. / Ziel dieser Arbeit ist es, dass Verständnis der adsorptionsinduzierter Deformation von nanoporösen (insbesondere mikroporösen) Materialien zu erweitern, um ihr Potenzial für die Materialcharakterisierung zu erforschen. Zusätzlich sollen Orientierungshilfen für technische Anwendungen, wie z.B. adsorptionsgetriebene Aktuatoren, bereitgestellt werden. Hierfür kombiniert diese Arbeit in-situ Dilatometriemessungen und detaillierte Modellierung der gemessenen adsorptionsinduzierten Dehnungen. Der wesentliche Vorteil dieser Arbeit gegenüber vorherigen Studien ist die Kombination des dilatometrischen Messaufbaus mit einer kommerziellen Gasadsorptionsanlage, was die Messung qualitativ hochwertiger Adsorptions- und Dehnungsisothermen erlaubt. Die betrachteten Materialsysteme sind (aktivierte und geglühte) Kohlenstoffxerogele, ein gesintertes Silica-Aerogel, ein gesintertes, hierarchisch strukturiertes, poröses Silica und binderlose Zeolithe der Typen LTA und FAU. Diese Auswahl umfasst mikro-, meso- und makroporöse ebenso wie geordnete und ungeordnete Modellmaterialien. Alle Modellmaterialien wurden mit Rasterelektronenmikroskopie, Gasadsorption und Schallgeschwindigkeitsmessungen charakterisiert. In-situ Dilatometriemessungen an mesoporösen Modellsystemen wurden für N2-Adsorption bei 77 K durchgeführt, während alle mikroporösen Modellsysteme zusätzlich bei CO2-Adsorption (273 K), Ar-Adsorption (77 K) und H2O-Adsorption (298 K) untersucht wurden. Der verfügbare Messaufbau für in-situ Dilatometrie wurde im Rahmen dieser Arbeit weiterentwickelt, um Auflösung und Reproduzierbarkeit der Messungen von kleinen Dehnungen zu verbessern, was insbesondere für mikroporöse Materialien von Bedeutung ist. Die experimentellen Adsorptions- und Dehnungsisothermen des hierarchisch strukturierten, porösen Silicas und des mikro-makroporösen Kohlenstoff-Xerogels wurden mit dem adsorption-stress-Modell quantitativ ausgewertet. Hierfür wurde das adsorption-stress-Modell, ursprünglich eingeführt von Ravikovitch et al., für die Verwendung von anisotropen Porengeometrien erweitert. Während die der Deformation zu Grunde liegende Adsorption im Fall des mesoporösen Silicas gut mit der klassischen und analytischen Theorie von Derjaguin, Broekhoff und de Boer beschrieben werden konnte, erforderte die Adsorption in den Kohlenstoffmikroporen umfassende Berechnungen mittels nichtlokaler Dichtefunktionaltheorie. Um die adsorptionsinduzierten Spannungen mit entsprechenden Dehnungen zu korrelieren, wurden zusätzlich mechanische Modelle für die untersuchten Materialien entworfen. Das resultierende theoretische Konstrukt aus Adsorptions-, adsorption-stress- und mechanischem Modell wurde auf die ermittelten experimentellen Daten angewandt und strukturelle und mechanische Eigenschaften der Modellmaterialien bestimmt, d.h. Porengröße bzw. Porengrößenverteilung sowie die mechanischen Module der porösen Matrix und des unporösen Festkörperskeletts. Es konnte gezeigt werden, dass die ermittelten Materialeigenschaften konsistent mit unabhängigen Messungen und/oder Literaturwerten sind. Hierbei ist zu beachten, dass sich die Erweiterung des adsorption-stress-Modells für eine korrekte Auswertung der experimentellen Daten als zwingend erforderlich erwies. Des Weiteren konnte gezeigt werden, dass die adsorptionsinduzierte Deformation von ungeordneten mesoporösen Aero-/Xerogelstrukturen qualitativ denselben Mechanismen folgt, die für das geordnete, hierarchisch strukturierte, poröse Silica identifiziert wurden. Die entsprechende quantitative Modellierung erwies sich allerdings als schwierig, da die Poren in Aero-/Xerogelstrukturen geometrisch schlecht zu fassen sind. Gute Übereinstimmung zwischen Modell und Experiment konnte nur für das Stadium gefüllter Poren und den relativen Druckbereich der Monolagenbildung erzielt werden. Der Zwischenbereich der Multilagenadsorption erfordert ein komplexeres Modell, um die Spannung quantitativ korrekt zu beschreiben, die sich auf Grund der gekrümmten Adsorbat-Adsorptiv-Grenzfläche im Material ausbildet. Mit Hinblick auf mikro-mesoporöse Kohlenstoffxerogele konnte gezeigt werden, dass sich dort Deformationsmechanismen von Mikro- und Mesoporen überlagern. Die Dehnungsisothermen der Zeolithe wurden nur qualitativ ausgewertet. Das Ergebnis für den Zeolithen vom Typ FAU stimmt gut mit anderen in der Literatur beschriebenen Experimenten und dem theoretischen Verständnis überein, das sich aus dem adsorption-stress-Modell ergibt. Im Gegensatz dazu ist die gemessene Dehnungsisotherme des Zeolithen vom Typ LTA eher ungewöhnlich, da sie monotone Expansion des LTA-Zeolithen über den gesamten Druckbereich zeigt. Qualitativ kann dieses Ergebnis ebenfals mit dem adsorption-stress-Modell erklärt werden, aber eine detaillierte, quantitative Analyse übersteigt den Rahmen dieser Arbeit. Insgesamt erweist sich die Analyse der adsorptionsinduzierten Dehnungen der Modellmaterialien als geeignetes Mittel, um Informationen über deren strukturelle und mechanische Eigenschaften zu erlangen, was auch die Steifigkeit des unporösen Festkörperskeletts miteinschließt. Desweiteren zeigen Untersuchungen an aktivierten und geglühten Kohlenstoffxerogelen, dass adsorptionsinduzierte Deformation insbesondere geeignet ist, um kleine Änderungen an Mikroporenstrukturen zu analysieren.
2

Mikro- und mesoporöse Silicate als Wirkstoffspeichersysteme / Micro and mesoporous silica for drug-delivery-systems

Wagenhöfer, Julian January 2014 (has links) (PDF)
Mesoporöse Silica-Materialien (MSM) und mikroporöse Zeolithe besitzen große innere Oberflächen und eine damit verbundene hohe Speicherkapazität von verschiedenen Molekülen. Auf Grund dieser Eigenschaften stehen poröse, silicatische Materialien seit etwa 10 Jahren im Focus der Entwicklung neuartiger Wirkstoffspeichersysteme (WSS). Die innerhalb dieser Thematik veröffentlichten wissenschaftlichen Arbeiten konnten die Fragestellungen nach dem exakten Mechanismus der Wirkstoffspeicherung und Wiederfreisetzung bisher nicht komplett beantworten. Die vorliegende Arbeit beschäftigt sich im Besonderen mit der Beladung und Abgabe des Lokalanästhetikum Lidocain-Hydrochlorid (LidHCl) in bekannten MSM wie SBA15, MCM41 oder HMS, sowie in unterschiedlich modifizierten Zeolithen vom Typ FAU und BEA. Zusätzlich wurde der Einfluss von organischen Ankergruppen innerhalb der Porenstruktur von SBA15 auf dessen Sorptions-eigenschaften hin untersucht. Ziel der Promotionsarbeit ist die Aufklärung des Speicher- und Freisetzungs-mechanismus dieses speziellen Speichersystems. Dazu wurden zunächst detaillierte Analysen der reinen und der mit Wirkstoff beladenen Matrizes via N2-Sorption (BET-, BJH-, t-plot-Methode), XRD, SAXS, DSC und TG durchgeführt. Außerdem wurden grafische Profile erstellt, die das Verhältnis der ad- bzw. desorbierten Wirkstoffmengen gegen die bei der Beladung eingesetzten Wirkstoffkonzentrationen (Speicherprofil) bzw. gegen die bei der Wiederfreisetzung verstrichene Zeit (Freisetzungsprofil) wiedergeben. Durch die Kombination dieser Untersuchungsmethoden konnte der jeweilige Sorptionsmechanismus, sowie der Speicherort der Wirkstoffmoleküle innerhalb der ausgewählten Matrix erfasst werden. Der Vergleich der verschiedenen, hier untersuchten Speichersysteme zeigt, dass neben der Porengröße, die Art der Adsorbens-Adsorbat-Wechselwirkung, aber auch die Stabilität der Porenstruktur einen großen Einfluss auf die Sorption von Molekülen nimmt. / Mesoporous Silica Materials (MSM) and microporous zeolites show high inner surfaces and high storage capacities for the delivery of molecules. As a result of these characteristics porous silica materials are in the focus of new Drug Delivery Systems (DDS´s) for about ten years. Scientific work on this topic could not totally clarify the mechanism of drug delivery and drug release up to now. This work deals particularly with the storage and release of the local anesthetic lidocaine hydrochloride (LidHCl) both in well-known MSM like SBA15, MCM41 or HMS and in modified zeolite type FAU or BEA. In addition the influence of organic anchor groups in modified SBA15 on the sorption characteristic was examined. The aim of this PhD thesis is the clarification of the delivery mechanism of this special DDS. Initially detailed analysis of pure and drug-loaded matrices were done by N2 Sorption (BET-, BJH-, t-plot-method), XRD, SAXS, DSC and TGA. Furthermore graphic accounts illustrate the relationship between the adsorbed drug amount and the drug concentration used during the loading (sorption profile) or released drug amount and the elapsed time (release profile). Delivery mechanisms and sorption spots of the drug molecules inside the selected adsorbents were formulated by the combination of these characterization methods. The comparison of the used DDS´s shows in detail that the sorption of molecules in porous silicates is extra-ordinary influenced by pore size, drug-adsorbens interaction and pore structure stability of the matrix.
3

Nanostructured Porous High Surface Area Ceramics for Catalytic Applications

Krawiec, Piotr 30 January 2007 (has links) (PDF)
In the present work new methods were developed for preparation of novel nanosized and nanostructured ceramic materials. Ordered mesoporous silica SBA-15 was found to be useful as a hard template for the nanocasting of silicon carbide and allowed the preparation of high temperature stable mesoporous silicon carbide ceramics. Chemical vapor infiltration of SBA-15 with dimethyldichlorosilane at elevated temperatures yields SiC/SBA-15 nanocomposites. The subsequent HF treatment of those composites resulted in silica removal and preparation of mesoporous silicon carbide with surface areas between 410 and 830 m2g-1 and high mesopore volume (up to 0.9 cm3g-1). The pore size (between 3 and 7nm in diameter) and surface area of mesoporous silicon carbide were controlled by adjusting the infiltration conditions (time, atmosphere). The mesoporous silicon carbide prepared via this method showed high structural thermal stability at 1300 oC, exceeding that of the SBA-15 template. However, the ordering on the mesoscopic scale was low. Nevertheless, highly ordered mesoporous silicon carbide materials were obtained via polymer melt infiltration in SBA-15. The low molecular weight polycarbosilane used as a preceramic precursor was converted at 1300 oC to silicon carbide inside the SBA-15, and after subsequent silica removal by HF, a highly ordered mesoporous material was obtained. Ordered mesoporous silicon carbide prepared by the methods reported here, may be an interesting material as a support due to its high temperature stability, chemical inertness, high thermal conductivity and semiconductor properties. In contrast to the nanocasting approach, based on the complete pore filling, also a new in-situ procedure for the preparation of finely dispersed metal and metal oxide particles inside ordered mesoporous silica was developed. A swelling agent (toluene) was used to deliver a hydrophobic platinum precursor into the surfactant micelles before addition of silica source. Such an in-situ method resulted in very high platinum incorporation (80-100%), not achieved for any other in-situ preparation procedures. Additionally, the presence of platinum allowed to decrease the template removal temperatures. Moreover, the method was also extended to other metal or metal oxide/ordered mesoporous silica systems. This may be especially interesting for the preparation of ordered mesoporous materials with low melting points, where typically the structure collapses during the high temperature calcinations process. The in-situ synthesized V2O5/MCM-41 materials were used to prepare VN/MCM-41 composites via nitridation in ammonia at 800oC. This method allowed to prepare highly dispersed, X-ray amorphous vanadium nitride species, with high activity in the propane dehydrogenation. Compared to nitridation of supported vanadium oxide prepared via the ex-situ procedure, in-situ synthesized materials showed similar catalytic activity, in spite of having significantly lower vanadium loading. As an alternative for the preparation of supported nitride materials, a novel preparation procedure of bulk not supported nanocrystalline vanadium nitride with high surface area was presented. Instead of pure oxide powder (which was typically used in the preparation of high surface area vanadium nitride catalysts), a macroporous amine intercalated V2O5 was used as the starting material. The obtained nitride consisted of small crystallites and had a surface area up to 198 m2g-1. Moreover, this foam-derived VN showed significantly improved activity as a catalyst in propane dehydrogenation. This novel preparation method could also be extended to other systems such as ternary VMoxNy nitrides.
4

Nanostructured Porous High Surface Area Ceramics for Catalytic Applications

Krawiec, Piotr 20 December 2006 (has links)
In the present work new methods were developed for preparation of novel nanosized and nanostructured ceramic materials. Ordered mesoporous silica SBA-15 was found to be useful as a hard template for the nanocasting of silicon carbide and allowed the preparation of high temperature stable mesoporous silicon carbide ceramics. Chemical vapor infiltration of SBA-15 with dimethyldichlorosilane at elevated temperatures yields SiC/SBA-15 nanocomposites. The subsequent HF treatment of those composites resulted in silica removal and preparation of mesoporous silicon carbide with surface areas between 410 and 830 m2g-1 and high mesopore volume (up to 0.9 cm3g-1). The pore size (between 3 and 7nm in diameter) and surface area of mesoporous silicon carbide were controlled by adjusting the infiltration conditions (time, atmosphere). The mesoporous silicon carbide prepared via this method showed high structural thermal stability at 1300 oC, exceeding that of the SBA-15 template. However, the ordering on the mesoscopic scale was low. Nevertheless, highly ordered mesoporous silicon carbide materials were obtained via polymer melt infiltration in SBA-15. The low molecular weight polycarbosilane used as a preceramic precursor was converted at 1300 oC to silicon carbide inside the SBA-15, and after subsequent silica removal by HF, a highly ordered mesoporous material was obtained. Ordered mesoporous silicon carbide prepared by the methods reported here, may be an interesting material as a support due to its high temperature stability, chemical inertness, high thermal conductivity and semiconductor properties. In contrast to the nanocasting approach, based on the complete pore filling, also a new in-situ procedure for the preparation of finely dispersed metal and metal oxide particles inside ordered mesoporous silica was developed. A swelling agent (toluene) was used to deliver a hydrophobic platinum precursor into the surfactant micelles before addition of silica source. Such an in-situ method resulted in very high platinum incorporation (80-100%), not achieved for any other in-situ preparation procedures. Additionally, the presence of platinum allowed to decrease the template removal temperatures. Moreover, the method was also extended to other metal or metal oxide/ordered mesoporous silica systems. This may be especially interesting for the preparation of ordered mesoporous materials with low melting points, where typically the structure collapses during the high temperature calcinations process. The in-situ synthesized V2O5/MCM-41 materials were used to prepare VN/MCM-41 composites via nitridation in ammonia at 800oC. This method allowed to prepare highly dispersed, X-ray amorphous vanadium nitride species, with high activity in the propane dehydrogenation. Compared to nitridation of supported vanadium oxide prepared via the ex-situ procedure, in-situ synthesized materials showed similar catalytic activity, in spite of having significantly lower vanadium loading. As an alternative for the preparation of supported nitride materials, a novel preparation procedure of bulk not supported nanocrystalline vanadium nitride with high surface area was presented. Instead of pure oxide powder (which was typically used in the preparation of high surface area vanadium nitride catalysts), a macroporous amine intercalated V2O5 was used as the starting material. The obtained nitride consisted of small crystallites and had a surface area up to 198 m2g-1. Moreover, this foam-derived VN showed significantly improved activity as a catalyst in propane dehydrogenation. This novel preparation method could also be extended to other systems such as ternary VMoxNy nitrides.
5

Physikochemische Untersuchung der Analyt – HKUST-1 Wechselwirkung unter Verwendung der inversen Gaschromatographie / Physicochemical investigation of the Analyt – HKUST-1 interaction using the inverse gas chromatography

Münch, Alexander 15 November 2013 (has links) (PDF)
Die vorliegende Arbeit hat neben der Untersuchung der Synthese über den Controlled SBU-Approach von HKUST-1, ein poröses Kupfertrimesat, die Abscheidung dieses Metal-Organic Frameworks in dünnen Quarzglaskapillaren mit einer Länge von 10 bis 30 m und Innendurchmessern zwischen 0,53 und 0,25 mm zum Thema. Diese Säulen werden zur gaschromatographischen Trennung wie auch zur Bestimmung physikochemischer Kenngrößen, die den Adsorptionsvorgang verschiedener Analyten auf der HKUST-1 Oberfläche beschreiben, verwendet. Zu den untersuchten Stoffen gehören neben unpolaren n-Alkanen, unterschiedlich substituierte Phenylaromaten und starke Lewisbasen, wie Alkoxyalkane. Bei diesen kann der Einfluss der Gestalt und Länge der an den Sauerstoffatomen befindlichen Alkylgruppen auf die Adsorption an HKUST-1 in Form von spezifischen und unspezifischen Wechselwirkungsenthalpien, bestimmt aus gaschromatographischen Messungen, und infrarotspektroskopischen Auswertungen untersucht werden. Abschließend wird eine quantitative Aussage über das Verhältnis von Acidität und Basizität der HKUST-1 Oberfläche getroffen.
6

Physikochemische Untersuchung der Analyt – HKUST-1 Wechselwirkung unter Verwendung der inversen Gaschromatographie

Münch, Alexander 05 November 2013 (has links)
Die vorliegende Arbeit hat neben der Untersuchung der Synthese über den Controlled SBU-Approach von HKUST-1, ein poröses Kupfertrimesat, die Abscheidung dieses Metal-Organic Frameworks in dünnen Quarzglaskapillaren mit einer Länge von 10 bis 30 m und Innendurchmessern zwischen 0,53 und 0,25 mm zum Thema. Diese Säulen werden zur gaschromatographischen Trennung wie auch zur Bestimmung physikochemischer Kenngrößen, die den Adsorptionsvorgang verschiedener Analyten auf der HKUST-1 Oberfläche beschreiben, verwendet. Zu den untersuchten Stoffen gehören neben unpolaren n-Alkanen, unterschiedlich substituierte Phenylaromaten und starke Lewisbasen, wie Alkoxyalkane. Bei diesen kann der Einfluss der Gestalt und Länge der an den Sauerstoffatomen befindlichen Alkylgruppen auf die Adsorption an HKUST-1 in Form von spezifischen und unspezifischen Wechselwirkungsenthalpien, bestimmt aus gaschromatographischen Messungen, und infrarotspektroskopischen Auswertungen untersucht werden. Abschließend wird eine quantitative Aussage über das Verhältnis von Acidität und Basizität der HKUST-1 Oberfläche getroffen.

Page generated in 0.0603 seconds