• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Physical characteristics of laser processed hydrogenated amorphous silicon

Halim, Mohd Mahadi January 2012 (has links)
Hydrogenated amorphous silicon films subjected to KrF excimer laser irradiation with a profiled beam in air leads to the formation of microstructures. The main objective of this research was to perform a comprehensive study in understanding this material in three different aspects: thermal, electrical, and optical properties by experiment, SEM analysis and modelling. For the thermal interactions, analysis was carried out to investigate factors relating to the formation of the microstructures in a range of applied laser fluences from 93.8 to 443.8 mJ/cm2. The tallest microstructures were formed with average height from 1 to 3 ?m at laser fluence of 312.5 mJ/cm2. Investigation also include the effect of different applied laser fluence, different scanning schemes, the effect of the presence of 300 nm metal layer, and irradiation environment. Thermal modelling using COMSOL simulation software was used to simulate heat transfer during laser-material interaction and the results suggest a fair agreement with experimental findings. SEM and TEM reveal that the material formed was an oxynitride with embedded particles of crystalline silicon. In the electrical part, conductivity and field emission were the main tools to help elucidate the internal structure. Arrhenius plots acquired from conductivity measurements demonstrates a decrease in activation energy from 0.8957 eV from original sample to 0.3955 and 0.1727 eV for HE and LE sample respectively. Analysis also showed an agreement with Meyer Neldel rule for both samples. Observation made on the ratio of dark current to photogenerated current revealed the decrease from 59600 in original sample to 1.77 and 1.40 for HE and LE samples respectively. For the field emission properties, IE plots from samples were analysed using 170 ?m fixed gap structure, and lowest emission thresholds were achieved at 3 and 2.4 V/?m for HE and LE samples respectively. The results were fitted to a model of conducting particles in an insulating matrix offering a transport route to the surface. In the optical part, FTIR measurements were carried and analysis in IR absorbance profile within range of 550 to 2200 cm-1 demonstrates SiHx absorbance peaks at 640 cm-1, between 1980 to 2100 cm-1, and at 2095 cm-1. Hydrogen content was found to be decreased with the increase in applied laser fluence from 12 % in original sample to 4.2 and 1.5 % for HE and LE sample respectively. Measurements using UV-Vis between wavelengths of 200 to 1100 nm shows high absorbance up to 98% for laser process sample from 218.8 to 312.5 mJ/cm2. TR analysis demonstrated increasing absorbance properties at increasing incident angle. Raman spectroscopy showed an increase in the crystal fraction with laser fluence. The final analysis work in this thesis examines the material as a potential disordered photonic crystal and studies the propagation and localisation of light in ordered and disordered photonic crystal, modelled using COMSOL simulation software. This shows the transition from diffusive to localised propagation. A number of applications are suggested for this structured material. This is the first report of a new large area ‘black silicon’ material that has a number of interesting applications.
2

Lasers inp sur circuits silicium pour applications en telecommunications / Hybrid III-V on silicon lasers for telecommunication applications

Lamponi, Marco 15 March 2012 (has links)
La photonique du silicium a connu un développent massif pendant les dix derniers années. Presque toutes les briques technologiques de base ont été réalisées et ont démontrées des performances remarquables. Cependant, le manque d’une source laser intégrée en silicium a conduit les chercheurs à développer de composants basés sur l’intégration entre le silicium et les matériaux III-V.Dans cette thèse je décris la conception, la fabrication et la caractérisation des lasers hybrides III-V sur silicium basés sur cette intégration. Je propose un coupleur adiabatique qui permet de transférer intégralement le mode optique du guide silicium au guide III-V. Le guide actif III-V au centre du composant fourni le gain optique et les coupleurs, des deux cotés, assurent le transfert de la lumière dans les guides silicium.Les lasers mono longueur d’onde sont des éléments fondamentaux des communications optiques. Je décris les différentes solutions permettant d’obtenir un laser mono-longueur d’onde hybride III-V sur silicium. Des lasers mono longueur d’onde ont été fabriqués et caractérisés. Ils démontrent un seuil de 21 mA, une puissance de sortie qui dépasse 10 mW et une accordabilité de 45 nm. Ces composants représentent la première démonstration d’un laser accordable hybride III-V sur silicium. / Silicon photonics knew an impressive development in the last ten years. Almost all the fundamental building blocks have been demonstrated and reveal competitive performances. However, the lack of an efficient silicon integrated laser source has led the researchers to develop heterogeneous integration of III-V materials on silicon.In this thesis I describe the design, the fabrication and the performances of these hybrid III-V on silicon lasers. I propose the use of an adiabatic coupler that totally transfers the optical mode between the III-V and the silicon waveguides. The active waveguide on III-V materials at the center of the device provides the optical gain, while, on both side, adiabatic couplers allow a loss-less transfer of the optical mode to the silicon waveguide. Single wavelength emitting lasers are fundamental elements for high bandwidth optical links. I review all the effective solutions enabling single waveguide hybrid III-V on SOI lasers. DBR, microring based, DFB and AWG laser solutions were analysed. Single wavelength operating lasers have been fabricated and characterized. A laser threshold of only 21 mA, an output power of more than 10 mW and tunability over 45 nm with a SMSR of 45 dB have been measured. These devices represent the first demonstration of a monolithically integrated hybrid III-V/Si tunable laser made by wafer bonding technique.
3

Investigation of New Concepts and Solutions for Silicon Nanophotonics

Wang, Zhechao January 2010 (has links)
Nowadays, silicon photonics is a widely studied research topic. Its high-index-contrast and compatibility with the complementary metal-oxide-semiconductor technology make it a promising platform for low cost high density integration. Several general problems have been brought up, including the lack of silicon active devices, the difficulty of light coupling, the polarization dependence, etc. This thesis aims to give new attempts to novel solutions for some of these problems. Both theoretical modeling and experimental work have been done. Several numerical methods are reviewed first. The semi-vectorial finite-difference mode solver in cylindrical coordinate system is developed and it is mainly used for calculating the eigenmodes of the waveguide structures employed in this thesis. The finite-difference time-domain method and beam propagation method are also used to analyze the light propagation in complex structures. The fabrication and characterization technologies are studied. The fabrication is mainly based on clean room facilities, including plasma assisted film deposition, electron beam lithography and dry etching. The vertical coupling system is mainly used for characterization in this thesis. Compared with conventional butt-coupling system, it can provide much higher coupling efficiency and larger alignment tolerance. Two novel couplers related to silicon photonic wires are studied. In order to improve the coupling efficiency of a grating coupler, a nonuniform grating is theoretically designed to maximize the overlap between the radiated light profile and the optical fiber mode. Over 60% coupling efficiency is obtained experimentally. Another coupler facilitating the light coupling between silicon photonic wires and slot waveguides is demonstrated, both theoretically and experimentally. Almost lossless coupling is achieved in experiments. Two approaches are studied to realize polarization insensitive devices based on silicon photonic wires. The first one is the use of a sandwich waveguide structure to eliminate the polarization dependent wavelength of a microring resonator. By optimizing the multilayer structure, we successfully eliminate the large birefringence in an ultrasmall ring resonator. Another approach is to use polarization diversity scheme. Two key components of the scheme are studied. An efficient polarization beam splitter based on a one-dimensional grating coupler is theoretically designed and experimentally demonstrated. This polarization beam splitter can also serve as an efficient light coupler between silicon-on-insulator waveguides and optical fibers. Over 50% coupling efficiency for both polarizations and -20dB extinction ratio between them are experimentally obtained. A compact polarization rotator based on silicon photonic wire is theoretically analyzed. 100% polarization conversion is achievable and the fabrication tolerance is relatively large by using a compensation method. A novel integration platform based on nano-epitaxial lateral overgrowth technology is investigated to realize monolithic integration of III-V materials on silicon. A silica mask is used to block the threading dislocations from the InP seed layer on silicon. Technologies such as hydride vapor phase epitaxy and chemical-mechanical polishing are developed. A thin dislocation free InP layer on silicon is obtained experimentally. / QC20100705

Page generated in 0.0399 seconds