• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 1
  • Tagged with
  • 6
  • 6
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Design, Simulation and Fabrication of Photonic Crystal Slab Waveguide Based Polarization Processors

Bayat, Khadijeh January 2009 (has links)
The Photonic Crystal (PC) is a potential candidate for a compact optical integrated circuit on a solid state platform. The fabrication process of a PC is compatible with CMOS technology; thus, it could be potentially employed in hybrid optical and electrical integrated circuits. One of the main obstacles in the implementation of an integrated optical circuit is the polarization dependence of wave propagation. Our goal is to overcome this obstacle by implementing PC based polarization controlling devices. One of the crucial elements of polarization controlling devices is the polarization rotator. The polarization rotator is utilized to manipulate and rotate the polarization of light. In this thesis, we have proposed, designed and implemented an ultra-compact passive PC based polarization rotator. Passive polarization rotator structures are mostly composed of geometrically asymmetric structures. The polarization rotator structure consists of a single defect line PC slab waveguide. The geometrical asymmetry has been introduced on top of the defect line as an asymmetric loaded layer. The top loaded layer is asymmetric with respect to the z-axis propagation direction. To synchronize the power conversion and avoid power conversion reversal, the top loaded layer is alternated around the z-axis periodically. The structure is called periodic asymmetric loaded PC slab waveguide. Due to the compactness of the proposed structure, a rigorous numerical method, 3D-FDTD can be employed to analyze and simulate the final designed structure. For the quick preliminary design, an analytical method that provides good approximate values of the structural parameters is preferred. Coupled-mode theory is a robust and well-known method for such analyses of perturbed waveguide structures. Thus, a coupled-mode theory based on semi-vectorial modes was developed for propagation modeling on square hole PC structures. In essence, we wish to develop a simple yet closed form method to carry out the initial design of the device of interest. In the next step, we refined the design by using rigorous but numerically expensive 3D-FDTD simulations. We believe this approach leads to optimization of the device parameters easily, if desired. To extend the design to a more general shape PC based polarization rotator, a design methodology based on hybrid modes of asymmetric loaded PC slab waveguide was introduced. The hybrid modes of the structure were calculated utilizing the 3D-FDTD method combined with the Spatial Fourier Transform (SFT). The propagation constants and profile of the slow and fast modes of an asymmetric loaded PC slab waveguide were extracted from the 3D-FDTD simulation results. The half-beat length, which is the length of each loaded layer, and total number of the loaded layers are calculated using the aforementioned data. This method provides the exact values of the polarization rotator structure’s parameter. The square hole PC based polarization rotator was designed employing both coupled-mode theory and normal modal analysis for THz frequency applications. Both design methods led to the same results. The design was verified by the 3D-FDTD simulation of the polarization rotator structure. For a square hole PC polarization rotator, a polarization conversion efficiency higher than 90% over the propagation distance of 12 λ was achieved within the frequency band of 586.4-604.5 GHz corresponding to the normalized frequency of 0.258-0.267. The design was extended to a circular hole PC based polarization rotator. A polarization conversion efficiency higher than 75% was achieved within the frequency band of 600-604.5 GHz. The circular hole PC polarization rotator is more compact than the square-hole PC structure. On the other hand, the circular hole PC polarization rotator is narrow band in comparison with the square hole PC polarization rotator. In a circular hole PC slab structure, the Bloch modes (fast and slow modes) couple energy to the TM-like PC slab modes. In both square and circular hole PC slab structures with finite number of rows, and the TM-like PC slab modes are extended to the lower edge of the bandgap. In bandgap calculation using PWEM, it is assumed that the PC structure is extended to infinity, however in practice the number of rows is limited, which is the source of discrepancy between the bandgap calculation using PWEM and 3D-FDTD. In an asymmetric loaded circular hole PC slab waveguide, the leaky TM-like PC slab modes are extended deep inside the bandgap and overlapped with both the slow and fast Bloch modes; whereas, in an asymmetric loaded square hole PC slab waveguide, the leaky TM-like PC slab modes are below the frequency band of slow and fast modes. Therefore, TM-like PC slab modes have significantly more adverse effect on the performance of the circular-hole based polarization rotator leading to a narrow band structure. SOI based PC membrane technology for THz application was developed. The device layer is made of highly resistive silicon to maintain low loss propagation for THz wave. The PC slab waveguide and polarization rotators were fabricated employing this technology. Finally, an a-SiON PC slab waveguide structures were also fabricated at low temperature for optical applications. This technology has the potential to be implemented on any substrate or CMOS chips.
2

Design, Simulation and Fabrication of Photonic Crystal Slab Waveguide Based Polarization Processors

Bayat, Khadijeh January 2009 (has links)
The Photonic Crystal (PC) is a potential candidate for a compact optical integrated circuit on a solid state platform. The fabrication process of a PC is compatible with CMOS technology; thus, it could be potentially employed in hybrid optical and electrical integrated circuits. One of the main obstacles in the implementation of an integrated optical circuit is the polarization dependence of wave propagation. Our goal is to overcome this obstacle by implementing PC based polarization controlling devices. One of the crucial elements of polarization controlling devices is the polarization rotator. The polarization rotator is utilized to manipulate and rotate the polarization of light. In this thesis, we have proposed, designed and implemented an ultra-compact passive PC based polarization rotator. Passive polarization rotator structures are mostly composed of geometrically asymmetric structures. The polarization rotator structure consists of a single defect line PC slab waveguide. The geometrical asymmetry has been introduced on top of the defect line as an asymmetric loaded layer. The top loaded layer is asymmetric with respect to the z-axis propagation direction. To synchronize the power conversion and avoid power conversion reversal, the top loaded layer is alternated around the z-axis periodically. The structure is called periodic asymmetric loaded PC slab waveguide. Due to the compactness of the proposed structure, a rigorous numerical method, 3D-FDTD can be employed to analyze and simulate the final designed structure. For the quick preliminary design, an analytical method that provides good approximate values of the structural parameters is preferred. Coupled-mode theory is a robust and well-known method for such analyses of perturbed waveguide structures. Thus, a coupled-mode theory based on semi-vectorial modes was developed for propagation modeling on square hole PC structures. In essence, we wish to develop a simple yet closed form method to carry out the initial design of the device of interest. In the next step, we refined the design by using rigorous but numerically expensive 3D-FDTD simulations. We believe this approach leads to optimization of the device parameters easily, if desired. To extend the design to a more general shape PC based polarization rotator, a design methodology based on hybrid modes of asymmetric loaded PC slab waveguide was introduced. The hybrid modes of the structure were calculated utilizing the 3D-FDTD method combined with the Spatial Fourier Transform (SFT). The propagation constants and profile of the slow and fast modes of an asymmetric loaded PC slab waveguide were extracted from the 3D-FDTD simulation results. The half-beat length, which is the length of each loaded layer, and total number of the loaded layers are calculated using the aforementioned data. This method provides the exact values of the polarization rotator structure’s parameter. The square hole PC based polarization rotator was designed employing both coupled-mode theory and normal modal analysis for THz frequency applications. Both design methods led to the same results. The design was verified by the 3D-FDTD simulation of the polarization rotator structure. For a square hole PC polarization rotator, a polarization conversion efficiency higher than 90% over the propagation distance of 12 λ was achieved within the frequency band of 586.4-604.5 GHz corresponding to the normalized frequency of 0.258-0.267. The design was extended to a circular hole PC based polarization rotator. A polarization conversion efficiency higher than 75% was achieved within the frequency band of 600-604.5 GHz. The circular hole PC polarization rotator is more compact than the square-hole PC structure. On the other hand, the circular hole PC polarization rotator is narrow band in comparison with the square hole PC polarization rotator. In a circular hole PC slab structure, the Bloch modes (fast and slow modes) couple energy to the TM-like PC slab modes. In both square and circular hole PC slab structures with finite number of rows, and the TM-like PC slab modes are extended to the lower edge of the bandgap. In bandgap calculation using PWEM, it is assumed that the PC structure is extended to infinity, however in practice the number of rows is limited, which is the source of discrepancy between the bandgap calculation using PWEM and 3D-FDTD. In an asymmetric loaded circular hole PC slab waveguide, the leaky TM-like PC slab modes are extended deep inside the bandgap and overlapped with both the slow and fast Bloch modes; whereas, in an asymmetric loaded square hole PC slab waveguide, the leaky TM-like PC slab modes are below the frequency band of slow and fast modes. Therefore, TM-like PC slab modes have significantly more adverse effect on the performance of the circular-hole based polarization rotator leading to a narrow band structure. SOI based PC membrane technology for THz application was developed. The device layer is made of highly resistive silicon to maintain low loss propagation for THz wave. The PC slab waveguide and polarization rotators were fabricated employing this technology. Finally, an a-SiON PC slab waveguide structures were also fabricated at low temperature for optical applications. This technology has the potential to be implemented on any substrate or CMOS chips.
3

Silicon photonics based MEMS tunable polarization rotator for optical communications

Das, Sandipan January 2016 (has links)
There has been a huge surge in data traffic all over the world due to the rise of streamingmedia services and connected devices. The current demand in data traffic has alreadypushed the optical fiber in the internet architecture to the network edges and the trend isto push it as close as possible, to the CPU. Silicon photonics addresses this challenge byenabling miniaturized optical devices that use light to move huge amounts of data at veryhigh speeds with extremely low power. To further improve the data transmission capacity,one can make use of different polarizations of light. However, to take advantage ofdifferent polarizations, devices with on-chip polarization rotation capability are required.This is achieved by a tunable polarization rotator. Moreover, full control of polarizationrotation can also be utilized to realize a new class of components in integrated photonicsincluding polarization mode modulators, multiplexers, filters, as well as switches foradvanced optical signal processing, coherent communications, and sensing.This thesis introduces a novel tunable polarization rotator that uses microelectromechanicalsystems (MEMS) as its actuation principle. When voltage is applied to a MEMStunable silicon cantilever, a mechanical movement occurs, which in turn affects theoptical mode shape travelling through a waveguide, as a result of which the polarizationis rotated. In this work, a MEMS tunable polarization rotator is designed, fabricated,and characterized with a polarization extinction ratio of 10 dB, which works in 1530nm -1570nm wavelength spectrum. In addition to the MEMS tunable polarization rotator,in this thesis, a free standing polarization beam splitter of length 1.4 μm, the shortestreported to-date to our knowledge, was designed, fabricated, and characterized. Thetunable polarization rotator and beam splitter developed in this thesis have the potentialto increase the bandwidth and flexibility of current optical communication networks, andfind further applications in polarization diversity schemes for sensing. / Mängden datatrafik i världen har växt explosionsartat de senaste åren på grund av detökade antalet uppkopplade enheter samt det snabbt växande tjänsterna för strömmad media. Det stora databehovet har redan gjort det nödvändigt att använda högkapacitiva optiska länkar hela vägen till nätverkets kanter och trenden är att optisk dataöverföring används närmare och närmare själva CPU:erna i datorerna som utgör källa och slutpunkt för all data på Internet. Kiselfotonik möter denna utmaning genom att möjliggöra miniatyriserade optiska system som använder ljus för att snabbt överföra stora mängder data med liten effektförbrukning. För att öka kapaciteten ännu mer kan man använda sig av ljusets polarisation. För att göra detta måste man tillhandahålla system för att vrida polarisation på chipp-nivå vilket man kan åstadkomma med en avstämbar polarisationsvridare. Utöver en ökad kapacitet kan den nya kontrollen över polarisation även användas för att skapa nya typer av integrerade optiska komponenter som polarisationsbaserade modulatorer, multiplexers, filter, såväl som switchar för optisk signalbehandling, koherent kommunikation och avkänning.Denna avhandling presenterar en ny avstämbar polarisationsvridare som använder en mikroelektromekanisk (MEMS) aktuator. När en spänning är applicerad på en MEMS balk skapas en mekanisk rörelse som i sin tur påverkar den optiska mod-bilden som propagerar i en integrerad optisk vågledare vilket resulterar i att polarisationen vrids. Denna avhandling innehåller design, tillverkning och karakterisering av en avstämbar polarisationsvridare med en polariseringsgrad på 10 dB i våglängdsområdet 1530-1570 nm. Utöver det presenteras design, tillverkning och karakterisering av frihängande polarisationsfördelare med en längd på endast 1.4 µm, den kortaste hittills rapporterad. Dessa komponenter har potentialen att öka bandbredden och flexibilite befintligaoptiska kommunikationsnät och hitta nya tillämpningar i sensorsystem.
4

Investigation of New Concepts and Solutions for Silicon Nanophotonics

Wang, Zhechao January 2010 (has links)
Nowadays, silicon photonics is a widely studied research topic. Its high-index-contrast and compatibility with the complementary metal-oxide-semiconductor technology make it a promising platform for low cost high density integration. Several general problems have been brought up, including the lack of silicon active devices, the difficulty of light coupling, the polarization dependence, etc. This thesis aims to give new attempts to novel solutions for some of these problems. Both theoretical modeling and experimental work have been done. Several numerical methods are reviewed first. The semi-vectorial finite-difference mode solver in cylindrical coordinate system is developed and it is mainly used for calculating the eigenmodes of the waveguide structures employed in this thesis. The finite-difference time-domain method and beam propagation method are also used to analyze the light propagation in complex structures. The fabrication and characterization technologies are studied. The fabrication is mainly based on clean room facilities, including plasma assisted film deposition, electron beam lithography and dry etching. The vertical coupling system is mainly used for characterization in this thesis. Compared with conventional butt-coupling system, it can provide much higher coupling efficiency and larger alignment tolerance. Two novel couplers related to silicon photonic wires are studied. In order to improve the coupling efficiency of a grating coupler, a nonuniform grating is theoretically designed to maximize the overlap between the radiated light profile and the optical fiber mode. Over 60% coupling efficiency is obtained experimentally. Another coupler facilitating the light coupling between silicon photonic wires and slot waveguides is demonstrated, both theoretically and experimentally. Almost lossless coupling is achieved in experiments. Two approaches are studied to realize polarization insensitive devices based on silicon photonic wires. The first one is the use of a sandwich waveguide structure to eliminate the polarization dependent wavelength of a microring resonator. By optimizing the multilayer structure, we successfully eliminate the large birefringence in an ultrasmall ring resonator. Another approach is to use polarization diversity scheme. Two key components of the scheme are studied. An efficient polarization beam splitter based on a one-dimensional grating coupler is theoretically designed and experimentally demonstrated. This polarization beam splitter can also serve as an efficient light coupler between silicon-on-insulator waveguides and optical fibers. Over 50% coupling efficiency for both polarizations and -20dB extinction ratio between them are experimentally obtained. A compact polarization rotator based on silicon photonic wire is theoretically analyzed. 100% polarization conversion is achievable and the fabrication tolerance is relatively large by using a compensation method. A novel integration platform based on nano-epitaxial lateral overgrowth technology is investigated to realize monolithic integration of III-V materials on silicon. A silica mask is used to block the threading dislocations from the InP seed layer on silicon. Technologies such as hydride vapor phase epitaxy and chemical-mechanical polishing are developed. A thin dislocation free InP layer on silicon is obtained experimentally. / QC20100705
5

Dimensionnement et réalisation d'un rotateur de polarisation à évolution de mode en optique intégrée sur verre / Design and realization of a mode evolution polarization rotator made by glass integrated optics technology

Jordan, Elodie 29 November 2016 (has links)
La création du premier laser en 1960 puis l’envol des télécommunications par fibres optique a généré le développement des circuits optiques intégrés. Ces derniers sont des solutions efficaces aux problèmes d’encombrement et d’instabilité. Un contrôle accru des signaux passe cependant par l’exploitation de la polarisation qui permet notamment d’augmenter les débits, de fiabiliser les signaux et de protéger les sources par une isolation optique. Cette dernière application fait partie d’un vaste projet mené par l’IMEP-LAHC en collaboration avec le laboratoire Hubert Curien de Saint-Etienne. L’isolateur sur verre comprend l’intégration d’un séparateur de polarisation, d’un rotateur Faraday et d’un rotateur réciproque de polarisation à 45°. L’objectif de ces travaux «était de démontrer la faisabilité de la dernière fonction. La réalisation s’est basée sur l’exploitation d’échanges d’ions assistés par un champ électrique (EAC). Une première étape a consisté à maîtriser les effets de bords inhérents aux EAC, afin de modeler le cœur d’un guide d’onde et incliner les axes neutres de polarisation. Ceci a été obtenu en cascadant deux EAC, le premier créant un guide d’indice de réfraction uniforme, le deuxième modelant son cœur. Le contrôle de la position des axes neutres a ainsi été démontrée pour la première fois dans cette technologie puisqu’une inclinaison à (46,6 ± 0,1)° en entrée et (42,3 ± 0,1)° en sortie a été mesurée. L’étude numérique du procédé de fabrication du rotateur réciproque a également été effectuée et l’adiabaticité du composant a été validé analytiquement. Une première réalisation a mis en évidence un problème de pertes élevées liées au dégazage des sels d’échange. Des pistes d’optimisation sont donc avancées. Une suggestion d’amélioration du rotateur Faraday est également présentée. Elle exploite les progrès obtenus sur les EAC et démontre la faisabilité de guides d’ondes à biréfringence négative. Finalement un procédé de fabrication de l’isolateur complet, compatible avec le budget thermique, est proposé. / The fabrication of the first laser in 1960 and the growth of fiber optics telecommunications have led to the development of integrated optics circuits. Theses lasts are efficient solutions to compacity and misalignment problems. Moreover, polarization management in integrated circuits enables to increase the data rate, to guaranty the signals reliability or to protect optical sources. The work presented here is dedicated to this last application, which is the motive of a long-term collaboration between IMEP-LAHC and the Hubert Curien institute in Saint-Etienne. Indeed, we proposed to fabricate a 45° reciprocal polarization rotator that is part of the optical isolator’s design, along with a polarization splitter and a Faraday rotator. We choose to use a field-assisted ion-exchange technique (FAIE). The implementation of the polarization rotator requires managing the side effects of the electrical field lines occurring during a FAIE. It allows controlling the waveguide core’s shape and thus the eigen axes tilt. It was obtained thanks to two cascaded FAIE. The first one, an Ag+/Na+ ion exchange, creates a high refractive index waveguide while the second one, a Na+/Na+ ion exchange, modifies the shape of the waveguide’s core. Measurements of the experimental polarization behavior are a first proof of a controlled tilt of eigen axes in this technology. Indeed, the waveguide exhibits a tilt of its eigen axes of (46.6 ± 0.1)° at the input and (42.3 ± 0.1)° at the output.The numerical study of the reciprocal rotator’s process has also been proposed and the adiabaticity of the design analytically validated. The first realization highlights high propagation losses that can linked to the degassing of the nitrate salts occurring during the FAIE. Possible improvements are thus suggested in the document.An enhancement of the Faraday rotator’s design is also proposed. It is obtained thanks to the fabrication of a waveguide exhibiting a negative birefringence whose design exploits the progress achieved in term of FAIE control. Eventually, a complete fabrication of the integrated isolator is proposed, taking into account the thermal budget of the various processes.
6

New electro-optical applications of liquid crystals: from beam steering devices and tunable lenses to negative refraction and field-induced dynamics of colloids

Pishnyak, Oleg 02 July 2009 (has links)
No description available.

Page generated in 0.1859 seconds