• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 22
  • 8
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 42
  • 42
  • 9
  • 8
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Compréhension et améliorations d'élastomères silicone de type Liquid Silicone Rubber / Comprehension and improvements of LSR type silicone elastomers

Delebecq, Etienne 09 December 2011 (has links)
L'objectif de ces travaux de thèse était d'améliorer les performances d'étanchéité de connecteurs automobiles fabriqués en silicone. La première approche visait à comprendre les relations entre les structures chimiques présentes dans les formulations LSR et les propriétés mécaniques afin de proposer des additifs favorisant la résistance à la déchirure. Lors d'une étude préalable, nous avons étudié l'effet synergétique du platine et de la silice sur la dégradation thermique de formulations silicone. Ce travail a permis de décrire le mécanisme et de proposer de nouvelles formulations plus performantes en terme de taux de résidu après pyrolyse. Cette première étude alliée à d'autres techniques a permis d'analyser les structures chimiques présentes dans huit formulations commerciales. Nous avons également caractérisé la réactivité ainsi que la structure du réseau polymère obtenu après réticulation. Les relations liant les structures chimiques à la structure des réseaux ont été établies. Enfin, les propriétés mécaniques telles que la déformation rémanente à la compression, les propriétés ultimes (force et élongation à la rupture) et la résistance à la déchirure des matériaux ont été corrélées avec les différentes structures des réseaux.La seconde partie était dédiée à la synthèse d'un additif fonctionnel thermiquement activable permettant de réparer a posteriori une déchirure. Afin de sélectionner le meilleur système correspondant au cahier des charges, une revue complète de la bibliographie a été réalisée sur la réversibilité des fonctions urées et uréthanes, en portant une attention particulière sur la chimie des isocyanate bloqués. Deux molécules bloquantes ont été sélectionnées après étude de la réactivation thermique de la fonction isocyanate. Un monomère portant cette fonction isocyanate bloqué a été engagé dans une réaction de copolymérisation afin d'obtenir plusieurs générations d'additifs testés selon les normes appliquées aux connecteurs. / This PhD work aimed at improving the water and air-proofing properties of automotive connectors made of silicones. The first approach consisted of understanding the relationships between the chemical structures added in the LSR formulations and their ultimate mechanical performances so as to propose additives which would improve tear resistance of the materials. In a preliminary study, we investigated the synergistic role of platinum catalyst and silica on the thermal degradation of silicone formulations. These investigations allowed us to describe the degradation mechanism and to suggest new formulations in order to improve the residue content at high temperature. This first study, combined with other techniques, allowed us to analyze the chemical structures present in eight commercial formulations. We also characterized the reactivities as well as the network topologies obtained after curing the formulations. Correlations between the chemical structures and the network topology were then established. Finally, some mechanical properties, i.e. the compression set, the ultimate properties (tensile strength and elongation at break) and the tear resistance of final materials were matched with network topologies. The second part was dedicated to the synthesis of a functional additive which could be thermally reactivated to heal a tear. In order to select the best system according to the strict specifications of this work, a complete literature review on the reversibility of urea and urethane bonds was done, with special emphasis on blocked isocyanate chemistry. After a study on the isocyanate group thermal reactivation, two blocking molecules were chosen. A monomer bearing this blocked isocyanate function was then copolymerized to obtain different generations of additives which were finally tested according to standard norms applied to connectors.
12

Elastická socha / Elastic Sculpture

Schlosser, Jiří January 2012 (has links)
Elastic sculpture - Cylinders Each object is created from men´s deodorant (spray) and silicone rubber. Shape and scale of the object depends on a size of spray which is cast in the geometric shape. Inflating the object by compression on the top part makes fast deformation or destruction. Instalation include 5-10 objects.
13

\"Aplicação de eletrodos compósitos a base de grafite e borracha de silicone na determinação de substâncias de interesse farmacológico\" / \"Application of composite silicone rubber based graphite electrode in determination of pharmacological interest substances\"

Santos, Sidney Xavier dos 23 March 2007 (has links)
Este trabalho tem por objetivo realizar estudos sobre as potenciais aplicações do compósito a base de grafite e borracha de silicone como material eletródico. O compósito foi aplicado na determinação de propranolol, uma droga antihipertensiva largamente utilizada no Brasil e rutina, um flavonóide com propriedades vasodilatadoras e antioxidantes. Os eletrodos foram preparados misturando-se proporções adequadas de pó de grafite e borracha de silicone, de maneira a obter um compósito com 70% de grafite (m/m). Dados de voltametria cíclica (CV) foram usados para estimar a região útil de trabalho para o eletrodo em diferentes eletrólitoes suporte e pH. Estudos usando CV foram utilizados para avaliar a resposta e o comportamento voltamétrico dos analitos propostos em relação a vários parâmetros. Para a quantificação foi utilizada voltametria de pulso diferencial (DPV), na qual foram obtidas curvas analíticas para definição de intervalos lineares de resposta e limites de detecção. Curvas analíticas também foram obtidas com eletrodo de carbono vítreo para comparação. Posteriormente, os procedimentos foram aplicados na determinação dos analitos em formulações farmacêuticas. Os resultados obtidos foram comparados com procedimentos padrão descritos na literatura. A rutina foi determinada no medicamento Novarrutiva e os resultados obtidos concordaram com o método de comparação com 95% de confiança. O propranolol foi determinado no medicamento Propranolol Ayerst? e os resultados concordaram com o método comparativo com 95% de confiança. Em todos os casos, com o eletrodo compósito foi obtido menor limite de detecção e maior região linear de resposta para os dois analitos, quando comparado ao eletrodo de carbono vítreo. / Studies regarding the applications of a graphite-silicone rubber composite as an electrode material have been performed and the results described in this work. The composite was used in the voltammetric determination of propranolol, an antihypertensive drug widely used in Brazil and rutin a flavonoid that presents both dilatation of blood vessels capabilities and antioxidative actions. The electrodes were prepared by using a suitable amount of graphite powder and silicone rubber in order to reach a 70% (graphite, w/w) composition. Cyclic voltammetric (CV) data were used in order to characterize the electrode material regarding useful potential window in different supporting electrolyte and pH. CV data were also used in order to evaluate the response of the composite electrode to the analytes. The quantitative measurements were performed with differential pulse voltammetry (DPV) with which analytical curves were obtained and used to estimate the detection limits and linear dynamic range. These data guided us towards the determination of the analytes in pharmaceutical formulations. The results were compared with those from standard methods with agreement in the 95% confidence level, according to the Student?s t-Test, in both cases. Lower limits of detection and larger linear dynamic ranges were observed for the composite when compared with those from the glassy carbon electrode under the same experimental conditions.
14

Preparação, caracterização e aplicação de eletrodos compósitos à base de nanotubos de carbono e polímeros / Preparation, characterization and aplication of composite electrodes based on carbon nanotubes and polymers

Santos, Sidney Xavier dos 16 May 2011 (has links)
Foram desenvolvidos eletrodos compósitos à base de nanotubos de carbono aglutinados por borracha de silicone e resina poliuretana de origem vegetal, visando aliar as interessantes propriedades dessa forma de carbono como material de eletrodo às vantagens da utilização de eletrodos sólidos. Para isso, os nanotubos adquiridos foram submetidos a um tratamento térmico/químico para eliminar eventuais resíduos metálicos de catalisador e carbono amorfo, bem como ativar sua superfície pela adição de grupos funcionais, abertura das extremidades e criação de defeitos em suas paredes. Os nanotubos foram caracterizados, antes e após o tratamento, utilizando técnicas como espectroscopia no infravermelho, espectroscopia Raman, microscopia eletrônica de varredura, termogravimetria e difração de raios X. Os resultados permitiram concluir que os materiais já vêm pré tratados pelo fabricante e o tratamento adicional leva a uma melhora em suas propriedades eletroquímicas. Posteriormente, os eletrodos compósitos foram preparados com nanotubos de carbono, tratados e na forma como foram recebidos, utilizando borracha de silicone ou poliuretana como aglutinantes. O efeito do tratamento na resposta voltamétrica dos eletrodos compósitos foi avaliado utilizando-se voltametria cíclica. Um estudo da composição do material condutor, composto de misturas de nanotubos de carbono tratados e grafite, indicou que a melhora na resposta do eletrodo é proporcional à quantidade de nanotubos presentes no compósito, verificada pelo aumento na corrente de pico e pela diminuição da separação dos potenciais de pico. Esta melhora foi mais significativa no eletrodo compósito à base de nanotubos de carbono e borracha de silicone, o qual foi aplicado na determinação de propranolol e hidroclorotiazida, dois fármacos utilizados no tratamento de hipertensão. Os procedimentos de determinação foram desenvolvidos e as técnicas de voltametria de pulso diferencial e voltametria de onda quadrada foram utilizadas na quantificação dos fármacos em formulações farmacêuticas, com limites de detecção da ordem de 10-8 mol L-1 para propranolol e 10-6 para hidroclorotiazida. Os resultados foram concordantes com os métodos oficiais descritos nas farmacopéias com 95 % de confiança, de acordo com teste t-Student. Melhor resposta voltamétrica foi propiciada pela presença dos nanotubos, pois não houve a necessidade de pré-concentração para obter resposta quantitativa semelhante às previamente descritas na literatura. / Composite electrodes were developed based on carbon nanotubes bonded by silicone rubber and polyurethane vegetable resin, aiming to combine the interesting properties of this form of carbon as electrode material to the advantage by using solid electrodes. For this, the nanotubes obtained were subjected to a heat/chemical treatment to remove any residual metal catalyst and amorphous carbon, and activate their surface by the addition of functional groups, opening the ends and defects\' creation in their walls. The nanotubes were characterized before and after treatment, using techniques, such as infrared spectroscopy, Raman spectroscopy, scanning electron microscopy, thermogravimetry and X-ray diffraction. The results showed that the material is pre treated by the manufacturer and additional treatment leads to an improvement in their electrochemical properties. Thereafter, the composite electrodes were prepared with treated and as received carbon nanotubes, using silicone rubber or polyurethane as binders. The treatment effect on the voltammetric response of the composite electrodes was evaluated using cyclic voltammetry. A study of the conductive material composition, composed by treated carbon nanotubes and graphite mixtures, indicated that the improvement in sensor response is proportional to the amount of nanotubes present in the composite, as verified by the increase in peak current and the decrease of the separation in the peak potentials. This improvement was more significant in the composite electrode based on carbon nanotubes and silicone rubber which was applied in the determination of propranolol and hydrochlorothiazide, both drugs used for hypertension treatment. The determination procedures were developed and the techniques of differential pulse voltammetry and square wave voltammetry were used for drugs\' quantification in pharmaceutical formulations, with detection limits of 10-8 mol L-1 for propranolol and 10-6 mol L-1 for hydrochlorothiazide. The results were consistent with the described methods in the official pharmacopoeias with 95% confidence, according to Student\'s t-Test. The best voltammetric response was obtained by the presence of the nanotubes, since there was no need for pre-concentration to get similar quantitative response to those previously described in literature.
15

Degradation of composite insulators at material interfaces

Bastidas Erazo, Pablo Daniel January 2018 (has links)
High-voltage (HV) outdoor composite insulators used in transmission lines are made of two polymers, comprising the core and housing, bonded together with metallic end-connections. The interface between these polymers is parallel to the electric field, which makes the insulators more prone to interfacial problems at these common points [1]. If interfacial ageing occurs, degradation and catastrophic breakdown can result [2]. Therefore, the design reliability of outdoor composite insulators depends on the high-strength bond between the core and the housing [3],[4]. Research findings by Kutil and Froshlic [5] indicate that delaminated areas, cavities and/or micro cracks in the medium are enough to initiate streamer discharges along the interface that are capable of degrading both insulating materials. The heat, UV radiation, and high-energy electrons produced from such discharge activity resulted in the growth of carbon paths along the interface, known as ‘tracking’, ultimately causing failure [6]. This investigation focuses on the development of tracking between silicone rubber and epoxy resin, with a view to replicating the tracking phenomena seen within composite insulators in service. A fine wire is placed between the dielectrics materials to enhance the local electric field magnitude and initiate discharge processes. The resulting partial discharge (PD) activity has been monitored. This Information has been used to understand the inception and propagation of the interfacial tracking. A strong relationship was found between maximum PD magnitude and track length. PD patterns and unique detailed images of the interfacial tracking development, allowed identification of the growth characteristics of interfacial channels and phases of tracking growth. Furthermore, a correlation in the mechanisms of interfacial degradation was found between the lab-fabricated samples and commercial composite rods. Finally, a growth model of interfacial ageing has been developed with the information from FEA models, PD patterns and the detailed images of tracking growth. The physical structure and chemical analysis of interfacial tracking is also disclosed to provide an insight into interfacial ageing mechanisms that occur in the composite insulators under electrical stress.
16

Loss and recovery of hydrophobicity of polydimethylsiloxane after exposure to electrical discharges

Hillborg, Henrik January 2001 (has links)
Silicone rubber based on polydimethylsiloxane is used ashigh voltage outdoor insulation, due to its ability to preservethe hydrophobic surface properties during service and evenregain hydrophobicity after exposure to electrical discharges.The underlying processes for the hydrophobic recovery arediffusion of low molar mass siloxanes from the bulk to thesurface and reorientation by conformational changes ofmolecules in the surface region. Only little is known of whichfactors are responsible for the long-term stability of thishydrophobic recovery. It is therefore important to increase theknowledge about the fundamental mechanisms for the loss andrecovery of hydrophobicity of silicone rubbers, exposed toelectrical discharges. Addition-cured polydimethylsiloxanenetworks, with known crosslink densities, were exposed tocorona discharges and air/oxygen-plasma and the loss andrecovery of hydrophobicity was characterised by contact anglemeasurements. The degree of surface oxidation increased withincreasing exposure time with a limiting depth of 100- 150 nm,as assessed by neutron reflectivity measurements. The oxidationrate increased with increasing crosslink density of the polymernetwork, according to X-ray photoelectron spectroscopy. Withinthe oxidised layer, a brittle, silica-like layer was graduallydeveloped with increasing exposure time. The hydrophobicrecovery following the corona or air/oxygen- plasma exposuresoccurred at a slow pace by diffusion of cyclic oligomericdimethylsiloxanes through the micro-porous but uncrackedsilica-like surface layer or at a much higher pace by transportof the oligomers through cracks in the silica-like layer. Theoligomers were present in the bulk, but additional amounts wereformed during exposure to corona discharges. High-temperaturevulcanised silicone rubber specimens were aged in a coastalenvironment under high electrical stress levels (100 V/mm). Thechanges in surface structure and properties were compared tothe data obtained from specimens exposed to coronadischarges/plasma. The dominating degradation mechanism wasthermal depolymerisation, initiated by hot discharges. Thisresulted in the formation of mobile siloxanes, of which the lowmolar mass fraction consisted of cyclic oligomericdimethylsiloxanes. Oxidative crosslinking resulting insilica-like surface layers was not observed during theseconditions. <b>Keywords:</b>silicone rubber, polydimethylsiloxane,hydrophobicity, corona, air-plasma, oxygen-plasma, surfacecharacterisation, degradation products, crosslink density.
17

Loss and recovery of hydrophobicity of polydimethylsiloxane after exposure to electrical discharges

Hillborg, Henrik January 2001 (has links)
<p>Silicone rubber based on polydimethylsiloxane is used ashigh voltage outdoor insulation, due to its ability to preservethe hydrophobic surface properties during service and evenregain hydrophobicity after exposure to electrical discharges.The underlying processes for the hydrophobic recovery arediffusion of low molar mass siloxanes from the bulk to thesurface and reorientation by conformational changes ofmolecules in the surface region. Only little is known of whichfactors are responsible for the long-term stability of thishydrophobic recovery. It is therefore important to increase theknowledge about the fundamental mechanisms for the loss andrecovery of hydrophobicity of silicone rubbers, exposed toelectrical discharges. Addition-cured polydimethylsiloxanenetworks, with known crosslink densities, were exposed tocorona discharges and air/oxygen-plasma and the loss andrecovery of hydrophobicity was characterised by contact anglemeasurements. The degree of surface oxidation increased withincreasing exposure time with a limiting depth of 100- 150 nm,as assessed by neutron reflectivity measurements. The oxidationrate increased with increasing crosslink density of the polymernetwork, according to X-ray photoelectron spectroscopy. Withinthe oxidised layer, a brittle, silica-like layer was graduallydeveloped with increasing exposure time. The hydrophobicrecovery following the corona or air/oxygen- plasma exposuresoccurred at a slow pace by diffusion of cyclic oligomericdimethylsiloxanes through the micro-porous but uncrackedsilica-like surface layer or at a much higher pace by transportof the oligomers through cracks in the silica-like layer. Theoligomers were present in the bulk, but additional amounts wereformed during exposure to corona discharges. High-temperaturevulcanised silicone rubber specimens were aged in a coastalenvironment under high electrical stress levels (100 V/mm). Thechanges in surface structure and properties were compared tothe data obtained from specimens exposed to coronadischarges/plasma. The dominating degradation mechanism wasthermal depolymerisation, initiated by hot discharges. Thisresulted in the formation of mobile siloxanes, of which the lowmolar mass fraction consisted of cyclic oligomericdimethylsiloxanes. Oxidative crosslinking resulting insilica-like surface layers was not observed during theseconditions.</p><p><b>Keywords:</b>silicone rubber, polydimethylsiloxane,hydrophobicity, corona, air-plasma, oxygen-plasma, surfacecharacterisation, degradation products, crosslink density.</p>
18

Prevention of Biofilm Formation on Silicone Rubber Materials for Outdoor High Voltage Insulators

Atari Jabarzadeh, Sevil January 2015 (has links)
Microbial colonization on the surface of silicone rubber high voltage outdoor insulators often results in the formation of highly hydrated biofilm that influence the surface properties, such as surface hydrophobicity. The loss of hydrophobicity might lead to dry band formation, and, in the worst cases, flashover and failure of the insulator. In this work, the biocidal effects of various antimicrobial compounds in silicone rubber materials were determined. These materials were evaluated according to an ISO standard for the antimicrobial activity against the growth of aggressive fungal strains, and microorganisms that have been found colonizing the surfaces of outdoor insulators in several areas in the world. Several compounds suppressed microbial growth on the surfaces of the materials without compromising the material properties of the silicone rubber. A commercial biocide and thymol were very effective against fungal growth, and sodium benzoate could suppress the fungal growth to some extent. Thymol could also inhibit algal growth. However, methods for preservation of the antimicrobial agents in the bulk of the material need to be further developed to prevent the loss of the compounds during manufacturing. Biofilm formation affected the surface hydrophobicity and complete removal of the biofilm was not achieved through cleaning. Surface analysis confirmed that traces of microorganisms were still present after cleaning. Further, surface modification of the silicone rubber was carried out to study how the texture and roughness of the surface affect biofilm formation. Silicone rubber surfaces with regular geometrical patterns were evaluated to determine the influence of the surface texture on the extent of microbial growth in comparison with plane silicone rubber surfaces. Silicone rubber nanocomposite surfaces, prepared using a spray-deposition method that applied hydrophilic and hydrophobic nanoparticles to obtain hierarchical structures, were studied to determine the effects of the surface roughness and improved hydrophobicity on the microbial attachment. Microenvironment chambers were used for the determination of microbial growth on different modified surfaces under conditions that mimic those of the insulators in their outdoor environments. Different parts of the insulators were represented by placing the samples vertically and inclined. The microbial growth on the surfaces of the textured samples was evenly distributed throughout the surfaces because of the uniform distribution of the water between the gaps of the regular structures on the surfaces. Microbial growth was not observed on the inclined and vertical nanocomposite surfaces due to the higher surface roughness and improved surface hydrophobicity, whereas non-coated samples were colonized by microorganisms. / <p>QC 20151002</p>
19

A Study of the Erosion Mechanisms of Silicone Rubber Housing Composites

Ghunem, Refat January 2014 (has links)
Silicone rubber insulators have been replacing conventional insulators made from toughened glass and porcelain in the power system, due to the non-wetting properties of silicone rubber insulation housing. However, silicone elastomers will eventually wet-out leading to leakage current and dry-band arcing giving rise to erosion of the silicone housing material, and eventually insulation failure. Well-established formulations of insulation housing composites have been developed and validated for erosion performance using the standard inclined plane tracking and erosion test, yet no such formulations have been developed and validated for DC. With the assumption that equivalent performance will be obtained, an adjustment to the creepage distance has been the measure taken in using the AC insulators for DC, without taking into consideration the differing aspects of the DC as compared to the AC dry-band arcing. This practice questions the existing DC insulators as an unknown entity that requires further investigation to ensure the reliability of the power supply. In addition recent demands have been raised to develop housing composites specifically for DC outdoor insulation, particularly with the increased interest in DC. It follows that developing a standard DC inclined plane tracking and erosion test is necessary for the development of more suitable materials for outdoor DC insulation applications. This thesis provides a thorough study of the DC dry-band arcing mechanism as opposed to the well understood mechanism of the AC dry-band arcing and provides a mechanistic understanding to the dry-band arcing leading to erosion as a foundation for the development of a standard DC inclined plane tracking and erosion test. To this end, the influence of inorganic fillers in silicone rubber on resisting erosion due to dry-band arcing is also presented, as an essential step towards obtaining more suitable silicone composite for DC outdoor insulation applications.
20

Modeling Flashover of AC Outdoor Insulators under Contaminated Conditions with Dry Band Formation and Arcing

January 2012 (has links)
abstract: This paper presents a theoretical model for evaluating flashover performance of insulators under contaminated conditions. The model introduces several new features when compared with existing models such as, the formation of dry bands, variations in insulator geometry and surface wettability. The electric field distribution obtained from software for 3-Dimensional models along with form factor are used to determine the dimensions of the dry bands and the onset of arcing. The model draws heavily from experimental measurements of flashover voltage and surface resistance under wet conditions of porcelain and composite insulators. The model illustrates the dominant role played by the insulator shape and housing material on the flashover performance. / Dissertation/Thesis / M.S. Electrical Engineering 2012

Page generated in 0.0637 seconds