• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Silicon based microcavity enhanced light emitting diodes

Potfajova, Jaroslava 08 February 2010 (has links) (PDF)
Realising Si-based electrically driven light emitters in a process technology compatible with mainstream microelectronics CMOS technology is key requirement for the implementation of low-cost Si-based optoelectronics and thus one of the big challenges of semiconductor technology. This work has focused on the development of microcavity enhanced silicon LEDs (MCLEDs), including their design, fabrication, and experimental as well as theoretical analysis. As a light emitting layer the abrupt pn-junction of a Si diode was used, which was fabricated by ion implantation of boron into n-type silicon. Such forward biased pn-junctions exhibit room-temperature EL at a wavelength of 1138 nm with a reasonably high power efficiency of 0.1%. Two MCLEDs emitting light at the resonant wavelength about 1150 nm were demonstrated: a) 1-lambda MCLED with the resonator formed by 90 nm thin metallic CoSi2 mirror at the bottom and semitransparent distributed Bragg reflector (DBR) on the top; b) 5.5-lambda MCLED with the resonator formed by high reflecting DBR at the bottom and semitransparent top DBR. Using the appoach of the 5.5-lambda MCLED with two DBRs the extraction efficiency is enhanced by about 65% compared to the silicon bulk pn-junction diode.
2

Silicon based microcavity enhanced light emitting diodes

Potfajova, Jaroslava 07 December 2009 (has links)
Realising Si-based electrically driven light emitters in a process technology compatible with mainstream microelectronics CMOS technology is key requirement for the implementation of low-cost Si-based optoelectronics and thus one of the big challenges of semiconductor technology. This work has focused on the development of microcavity enhanced silicon LEDs (MCLEDs), including their design, fabrication, and experimental as well as theoretical analysis. As a light emitting layer the abrupt pn-junction of a Si diode was used, which was fabricated by ion implantation of boron into n-type silicon. Such forward biased pn-junctions exhibit room-temperature EL at a wavelength of 1138 nm with a reasonably high power efficiency of 0.1%. Two MCLEDs emitting light at the resonant wavelength about 1150 nm were demonstrated: a) 1-lambda MCLED with the resonator formed by 90 nm thin metallic CoSi2 mirror at the bottom and semitransparent distributed Bragg reflector (DBR) on the top; b) 5.5-lambda MCLED with the resonator formed by high reflecting DBR at the bottom and semitransparent top DBR. Using the appoach of the 5.5-lambda MCLED with two DBRs the extraction efficiency is enhanced by about 65% compared to the silicon bulk pn-junction diode.

Page generated in 0.0399 seconds