Spelling suggestions: "subject:"simplified 3dmodeling"" "subject:"simplified bymodeling""
1 |
Development of a Simplified Analysis Approach for Predicting Pile Deflections of Piers Subjected to Lateral Spread Displacements and Application to a Pier Damaged During the 2010 Maule, Chile, M8.8 EarthquakePalmer, Logan Matthew 01 December 2018 (has links)
The 2010, moment magnitude 8.8 earthquake that occurred near Maule, Chile caused major damages to several piers in the Port of Coronel located approximately 160 kilometers (100 miles) to the South of the earthquake epicenter. One of the piers, the North Pier, experienced significant lateral spreading that was caused from liquefaction of the soils at the approach zone of the pier. Damages from lateral spreading and liquefaction effects consisted of sheet pile welding ruptures of the cross-support beams, stiffener buckling, pile displacements, pile rotations, and pier deck displacement. Researchers analyzed the North Pier after the earthquake and documented in detail the damage caused by lateral spread displacements. This study introduces a simplified performance-based procedure called the "Simplified Modeling Procedure" that is used for the analysis of piles supporting a pier that are exposed to lateral spread displacements. The procedure uses the software LPILE, a common program for analyzing a single pile under lateral loading conditions, to evaluate a more complex multi-pile pier design. Instead of analyzing each of the piles in a given pier individually, the procedure utilizes what is known as a "Super Pile" approach to combine several piles into a single representative pile during the analysis. To ensure displacement compatibility between each "Super Pile" in the analysis, the "Super Piles" are assumed to be fully connected at the top of each "Super Pile" to the pier deck. The Simplified Modeling Procedure is developed and tested using the case study history of the North Pier from the Port of Coronel during the 2010 Maule earthquake. The Simplified Modeling Procedure incorporates p-y springs with a lateral push-over analysis. This approach allows the analysis to be performed in a matter of seconds and allows the user to more easily draw the needed correlations between the rows of piles. This procedure helps identify that different rows of piles either contribute to the movement of the pier or contribute to the bracing of the pier. The procedure ultimately predicts the anticipated pier deck deflection by determining when all the pile rows and their respective shear forces are in equilibrium. The Simplified Modeling Procedure predicted that the North Pier experienced deflections between approximately 0.31 meters (1.01 feet) and 0.38 meters (1.26 feet). The predicted deflections and rotations determined using the procedure were determined to be a relatively close representation of the observations made during the post-earthquake reconnaissance observations.
|
2 |
Dynamic Soil-Structure Interaction Analysis of Railway Bridges : Numerical and Experimental ResultsZangeneh Kamali, Abbas January 2018 (has links)
The work reported in this thesis presents a general overview of the dynamic response of short-span railway bridges considering soil-structure interaction. The study aims to identify the effect of the surrounding and underlying soil on the global stiffness and damping of the structural system. This may lead to better assumptions and more efficient numerical models for design.A simple discrete model for calculating the dynamic characteristics of the fundamental bending mode of single span beam bridges on viscoelastic supports was proposed. This model was used to study the effect of the dynamic stiffness of the foundation on the modal parameters (e.g. natural frequency and damping ratio) of railway beam bridges. It was shown that the variation in the underlying soil profiles leads to a different dynamic response of the system. This effect depends on the ratio between the flexural stiffness of the bridge and the dynamic stiffness of the foundation-soil system but also on the ratio between the resonant frequency of the soil layer and the fundamental frequency of the bridge. The effect of the surrounding soil conditions on the vertical dynamic response of portal frame bridges was also investigated both numerically and experimentally. To this end, different numerical models (i.e. full FE models and coupled FE-BE models) have been developed. Controlled vibration tests have been performed on two full-scale portal frame bridges to determine the modal properties of the bridge-soil system and calibrate the numerical models. Both experimental and numerical results identified the substantial contribution of the surrounding soil on the global damping of short-span portal frame bridges. A simplified model for the surrounding soil was also proposed in order to define a less complicated model appropriate for practical design purposes. / <p>QC 20180315</p>
|
3 |
Dynamic Soil-Structure Interaction of a Portal Frame Railway Bridge - Numerical Analysis on a Case Study BridgeIkzer, Rita January 2018 (has links)
In the field of structural dynamics, a broader knowledge about relevant phenomena that affect the dynamic behavior of railway bridges is vital for structural engineers and design code administrators. The knowledge might benefit in an increased understanding of e.g. the resonance phenomena, and in improvements of the existing design codes. A phenomenon that has received more attention in recent times is the so called soil-structure interaction (SSI), as it may significantly contribute to the stiffness and damping of a structural system. Previous investigations have suggested that the influence of SSI might be crucial for short and relatively stiff structures such as portal frame bridges. Yet, this effect is usually neglected due to the lack of simple models and guidelines. Dynamic analyses have been performed on a short-span closed portal frame railway bridge, situated on the Bothnia Line, where the effect of the surrounding and underlying soil and the ballasted track, has been investigated. This has been accomplished through the adoption of multiple boundary conditions to consider different forms of soil-structure interactions. The vertical bridge response has been studied by numerical three-dimensional models, both with full FE-models and simplified models appropriate for practical design purposes. More specifically the natural frequencies and damping ratios have been scrutinized. Theoretically, it has been identified that the contribution of the soil on the global damping is largely influential, as it has been indicated that the damping ratio of the fundamental bending mode is seven times greater than the, in this case, significantly conservative recommended design value. Furthermore, SSI has shown to increase the natural frequencies which consequently shifts the critical resonant speed, allowing for higher speeds. The bridge response is predominantly affected by the backfill soil, yet the modal damping contribution is equally substantial from the backfill and the subsoil. Moreover, it has been established that the proposed simplified model is promising and in good agreement with the full model. It has also been resolved that train passages on the surrounding soil play an important role on the dynamic bridge response. Unfortunately, the simplified model has proven to be incapable of considering these train loads, implying that further development is needed to attain an adequate model that may be implemented for portal frame bridges of short span. Applying only elastic constraints on the vertical degree of freedom at the foundation is a simplified modeling approach that fails to capture the soil behavior in an accurate manner, and is therefore not recommended for future research projects. While on the subject of future investigations, the effect of SSI should be studied on other bridges to externally validate the obtained results. / Inom strukturdynamik är det essentiellt att erhålla en bredare kunskap om relevanta fenomen som kan påverka det dynamiska beteendet av järnvägsbroar. Detta gäller för både yrkesverksamma ingenjörer och administratörer av normer och standarder för att få en ökad förståelse av exempelvis resonansfenomen samt för revidering och förbättring av befintliga normer. Ett fenomen som på senare tid har fått mer uppmärksamhet är den så kallade jord-struktur interaktionen eftersom den kan ha en signifikant inverkan på styvheten och dämpningen av ett system. Tidigare undersökningar har tytt på att effekten av jord-struktur interaktionen kan vara avgörande för korta och relativt styva broar som exempelvis plattrambroar. På grund av bristen på enkla modeller och riktlinjer är denna effekt ofta försummad. Dynamiska analyser har utförts på en kort sluten plattrambro belägen på Botniabanan, där påverkan av motfyllningen, underliggande jorden och det ballasterade spåret har utretts. Detta har åstadkommits genom att beakta olika randvillkor för att ta hänsyn till diverse former av jord-struktur interaktioner. Den vertikala responsen i bron har studerats genom tredimensionella numeriska modeller både med detaljerade FE-modeller och med praktiskt lämpade förenklade modeller, där i synnerhet egenfrekvensen och dämpningskvoten har analyserats. Bidraget från jorden har påvisat sig ha en avsevärd inverkan på den globala dämpningen då det framgick att dämpningskvoten för den fundamentala böjmoden är sju gånger större än det, i denna fallstudie, betydligt konservativa rekommenderade dimensioneringsvärdet. Dessutom har jord-struktur interaktionen lett till ökade egenfrekvenser som följaktligen skiftat den kritiska resonanshastigheten vilket tillåter högre hastigheter. Motfyllningen har haft en avsevärd effekt på responsen av bron, medan bidraget till ökningen i modala dämpningen har fördelats lika mellan motfyllningen och underliggande jorden. Vidare är den föreslagna förenklade modellen lovande och i god överenstämmelse med den detaljerade modellen. Det har även konstaterats att tågpassager på motfyllningen spelar en viktig roll för den dynamiska responsen. Dessvärre har den förenklade modellen misslyckats med att ta hänsyn till dessa tåglaster, vilket indikerar att en vidareutveckling krävs för en implementerbar adekvat modell för plattrambroar av korta spännvidder. Ett förenklat modelleringsalternativ är applicering av enbart elastiska randvillkor i den vertikala frihetsgraden av bottenplattan. Detta alternativ har visat sig vara otillräckligt för att efterlikna den underliggande jordens beteende och undanbedes för framtida studier. På tal om framtida projekt bör jord-struktur interaktionen utredas på andra broar för att externt validera resultaten.
|
Page generated in 0.0883 seconds