• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Simulation cognitive de la prise de décision d'experts ; application au trafic maritime.

Le Pors, Thierry 22 November 2010 (has links) (PDF)
Les systèmes multi-agents (SMA) permettent à ce jour de simuler des phénomènes impliquant des entités en interactions. Ces entités peuvent représenter des experts et doivent alors utilisent des processus cognitifs de haut niveau (perception, prise de décision, raisonnement, stockage de l'information en mémoire). Depuis longtemps, la psychologie cognitive étudie ces processus cognitifs et a proposé des modèles conceptuels de la cognition humaine. L'approche « Naturalistic Decision Making » (prise de décision naturelle) et plus particulièrement RPD (Recognition-Primed-Decision), modélise la prise de décisions efficaces par des individus dans des situations complexes en fonction de leur expérience et du contexte. L'objectif de cette thèse est d'intégrer au sein d'un SMA, via l'approche Agent-Groupe-Rôle, le modèle RPD pour simuler les comportements d'experts. L'expérience des individus est stockée à l'aide d'une base de patrons. Un patron associe à une situation prototypique une décision générique. Le modèle de prise de décision qui en découle : DBP (Décision à Base de Patrons) est décomposé en quatre phases. La première ; la perception de la situation courante est basée sur des sous-ensembles flous. Ils sont employés pour transformer des données quantitatives en données qualitatives. Une phase d'appariement de la situation courante à une ou plusieurs situations prototypiques est alors lancée. Puis, le patron optimal, en fonction de critères spécifiques au profil de chaque agent, est retenu. Finalement, la décision est traduite en une action. DBP est validé par une extension du simulateur TRANS (Tractable Role Agent prototype for concurrent Navigation Systems) afin de reproduire le comportement d'experts maritimes. L'extension créée ; CogTRANS (cognitive TRANS) porte plus particulièrement sur les décisions des chefs de quart à bord de ferries et de cargos. CogTRANS permet de simuler les évitements de collisions de façon réaliste. Il offre ainsi de bonnes perspectives pour une meilleure compréhension des risques maritimes et l'amélioration d'outils pédagogiques pour l'apprentissage de la navigation.
2

Impact of Quantitative Feedback via High-Fidelity Airway Management Training on Success Rate in Endotracheal Intubation in Undergraduate Medical Students—A Prospective Single-Center Study

Hempel, Gunther, Heinke, Wolfgang, Struck, Manuel F., Piegeler, Tobias, Rotzoll, Daisy 06 April 2023 (has links)
Endotracheal intubation is still the gold standard in airway management. For medical students and young professionals, it is often difficult to train personal skills. We tested a high-fidelity simulator with an additional quantitative feedback integration to elucidate if competence acquisition for airway management is increased by using this feedback method. In the prospective trial, all participants (n = 299; 4th-year medical students) were randomized into two groups—One had been trained on the simulator with additional quantitative feedback (n = 149) and one without (n = 150). Three simulator measurements were considered as quality criteria—The pressure on the upper front row of teeth, the correct pressure point of the laryngoscope spatula and the correct depth for the fixation of the tube. There were a total of three measurement time points—One after initial training (with additional capture of cognitive load), one during the exam, and a final during the follow-up, approximately 20 weeks after the initial training. Regarding the three quality criteria, there was only one significant difference, with an advantage for the control group with respect to the correct pressure point of the laryngoscope spatula at the time of the follow-up (p = 0.011). After the training session, the cognitive load was significantly higher in the intervention group (p = 0.008) and increased in both groups over time. The additional quantitative feedback of the airway management trainer brings no measurable advantage in training for endotracheal intubation. Due to the increased cognitive load during the training, simple airway management task training may be more efficient for the primary acquisition of essential procedural steps.
3

Développement d'un modèle du conducteur automobile : De la modélisation cognitive à la simulation numérique

Bornard, Jean-Charles 21 December 2012 (has links) (PDF)
L'activité de conduite automobile prend place dans un environnement dynamique en constante évolution. Le conducteur doit progresser sur la route au moyen de son véhicule, tout en interagissant adéquatement avec l'environnement et les autres usagers. Pour réaliser cette tâche, le conducteur doit percevoir son environnement, interpréter les événements pour se représenter correctement la situation de conduite, anticiper ces changements, et prendre des décisions a n d'engager des actions sur le véhicule lui permettant d'atteindre les buts qu'il se fixe à court et long terme. A cet égard, la complexité et la diversité des processus perceptifs, cognitifs et sensori-moteurs requis pour la conduite automobile font de cette activité un objet d'étude particulièrement riche pour les sciences de la cognition. Pour étudier l'activité du conducteur automobile a n de la comprendre, l'expliquer et peut-être la prédire, les sciences cognitives se dirigent vers la modélisation de la cognition humaine. Cette démarche permet une représentation et une description plus ou moins ne du système cognitif du conducteur automobile. Cependant, un modèle de la cognition ne permet qu'une description théorique. Grâce à son implémentation informatique, il devient possible de simuler les théories utilisées et déployer numériquement celles mises en jeu dans la modélisation cognitive. Ce travail de thèse s'articule autour de la modélisation cognitive du conducteur automobile, de son implémentation informatique sur une plateforme de développement virtuel et de sa simulation au sein de cette plateforme. Le modèle théorique que nous avons implémenté est COSMODRIVE, en développement au laboratoire du LESCOT à l'IFSTTAR, et la plateforme de développement accueillant le modèle est SiVIC, développée au LIVIC. C'est dans ce contexte que nous nous sommes engagés dans le développement computationnel et informatique du modèle COSMODRIVE, a n de pouvoir simuler l'activité perceptive et cognitive du conducteur automobile. Pour cela, nous nous sommes limités à certains processus cognitifs primordiaux, comme les fonctions stratégiques (plani cation d'itinéraires et réalisation de plans stratégiques), ou les fonctions perceptives (exploration et intégration de l'information visuelle), les fonctions cognitives tactiques (construction de représentations mentales, intégration perceptivo-cognitive de l'information, structuration des connaissances de conduite, etc.), ou encore les fonctions d'exécution d'actions (régulation courte par zones enveloppes ou par points de poursuite). Par l'implémentation informatique du modèle COSMODRIVE sur SiVIC, il devient possible d'incarner numériquement des théories cognitives et de les opérationnaliser pour formuler des hypothèses de recherche sous la forme de prédictions de performances que l'on pourra évaluer empiriquement auprès de conducteurs humains. Ces hypothèses formulées, nous avons conduit des expérimentations sur un simulateur de conduite que nous avons construit. A n d'éprouver notre modèle théorique et informatique du conducteur automobile, nous avons comparé les performances des conducteurs humains avec les prédictions issues de la simulation. Les résultats obtenus ont permis de valider cette approche et de con firmer l'intérêt de la simulation cognitive pour appréhender les activités mentales du conducteur automobile.
4

Développement d'un modèle du conducteur automobile : de la modélisation cognitive à la simulation numérique / Development of a car driver model : from the cognitive modeling to the digital simulation

Bornard, Jean-Charles 21 December 2012 (has links)
L’activité de conduite automobile prend place dans un environnement dynamique en constante évolution. Le conducteur doit progresser sur la route au moyen de son véhicule, tout en interagissant adéquatement avec l'environnement et les autres usagers. Pour réaliser cette tâche, le conducteur doit percevoir son environnement, interpréter les événements pour se représenter correctement la situation de conduite, anticiper ces changements, et prendre des décisions afin d'engager des actions sur le véhicule lui permettant d'atteindre les buts qu'il se fixe à court et long terme. A cet égard, la complexité et la diversité des processus perceptifs, cognitifs et sensori-moteurs requis pour la conduite automobile font de cette activité un objet d'étude particulièrement riche pour les sciences de la cognition.Pour étudier l'activité du conducteur automobile afin de la comprendre, l'expliquer et peut-être la prédire, les sciences cognitives se dirigent vers la modélisation de la cognition humaine. Cette démarche permet une représentation et une description plus ou moins fine du système cognitif du conducteur automobile. Cependant, un modèle de la cognition ne permet qu'une description théorique. Grâce à son implémentation informatique, il devient possible de simuler les théories utilisées et déployer numériquement celles mises en jeu dans la modélisation cognitive.Ce travail de thèse s'articule autour de la modélisation cognitive du conducteur automobile, de son implémentation informatique sur une plateforme de développement virtuel et de sa simulation au sein de cette plateforme. Le modèle théorique que nous avons implémenté est COSMODRIVE, en développement au laboratoire du LESCOT à l'IFSTTAR, et la plateforme de développement accueillant le modèle est SIVIC, développée au LIVIC. C'est dans ce contexte que nous nous sommes engagés dans le développement computationnel et informatique du modèle COSMODRIVE, afin de pouvoir simuler l'activité perceptive et cognitive du conducteur automobile. Pour cela, nous nous sommes limités à certains processus cognitifs primordiaux, comme les fonctions stratégiques (planification d'itinéraires et réalisation de plans stratégiques), ou les fonctions perceptives (exploration et intégration de l'information visuelle), les fonctions cognitives tactiques (construction de représentations mentales, intégration perceptivo-cognitive de l'information, structuration des connaissances de conduite, etc), ou encore les fonctions d'exécution d'actions (régulation courte par zones enveloppes ou par points de poursuite).Par l'implémentation informatique du modèle COSMODRIVE sur SIVIC, il devient possible "d'incarner numériquement" des théories cognitives et de les "opérationnaliser" pour formuler des hypothèses de recherche sous la forme de prédictions de performances que l'on pourra évaluer empiriquement auprès de conducteurs humains. Ces hypothèses formulées, nous avons conduit des expérimentations sur un simulateur de conduite que nous avons construit. Afin d'éprouver notre modèle théorique et informatique du conducteur, nous avons comparé les performances des conducteurs humains avec les prédictions issues de la simulation. Les résultats obtenus ont permis de valider cette approche et de confirmer l'intérêt de la simulation cognitive pour appréhender les activités mentales du conducteur automobile. / Driving activity takes place in a dynamic and constantly changing environment. The driver has to make his car evolving on the road while ensuring adequate interactions with its close environment and other road users. In order to perform this task, the driver has to perceive the environment he is evolving in, to interpret events in order to correctly understand the current driving situation, to be able to anticipate its evolution and take decisions regarding vehicle control in order to reach his short and long term goals safely. As a result, both complexity and variety of perceptual, cognitive and sensorimotor processes involved in the driving activity make it very rich context for cognitive sciences.The modeling of human cognition, a specific method which belongs to cognitive sciences field, has been chosen to study driver's activity aiming at understanding, explaining or even predicting it. This approach allows a representation and a description of the driver's cognitive system with different levels of granularity. Thus, such a model offers only a theoretical description. When implemented on a computer, it opens the way to the simulation allowing the digital deployment of the theories involved in the cognitive model design.This thesis is focused on cognitive modeling of car driver, its implementation and its simulation using a virtual platform. The theoretical model that we implemented is COSMODRIVE, developed at IFSTTAR - LESCOT laboratory and the implementation platform we used for this, named SIVIC, is developed at IFSTTAR - LIVIC.This is the context where we started the computational development of the COSMODRIVE model in order to simulate the perceptual and cognitive activity of car driver. Indeed, we chose to limit our implementation to some crucial cognitive processes such as strategic functions (route planning and strategic plans execution), perceptual functions (exploration and integration of visual information), cognitive tactical functions (construction of mental representations, perceptual and cognitive integration of information, structuring of driving knowledge, etc.), or executive functions of actions (short control loop by ''envelopes zones'' or pursuit points).Through computer simulation, we used the numerical model as an innovative tool for scientific investigation in the field of cognitive sciences: The numerical simulation of cognitive functions identified and modeled by COSMODRIVE allowed us to define experimental hypotheses which leed us to conduct experiments in a driving simulator that we have built. To test the theoretical model and computer of the car driver, we compared the performance of human drivers on one hand and the predictions issued from the simulation on the other hand. It opens innovative opportunities for the development and the use of cognitive modeling and simulation of car driver.

Page generated in 0.0923 seconds