Spelling suggestions: "subject:"simulationlation een COMSOL"" "subject:"simulationlation enn COMSOL""
1 |
Studium vedení tepla metodami počítačového modelováníSTANĚK, Jakub January 2019 (has links)
This diploma thesis is concerned with a problem of the line heat simulation by different kinds of materials with computer - aided COMSOL Multiphysics. The thesis is composed of three thematic units. In the first part there is a line heat principle shortly described and his basic physical quantities which are necessary for correct defining of the simulation. The second part is concerned with the software, its function, auxiliary modulus and a description of single actions, which are essential for making of the model. In the last part there is the whole process of the multiphysical task creation that enables to simulate line heat in a specific material in reliance on time.
|
2 |
Investigation of the heat transfer of enhanced additively manufactured minichannel heat exchangersRastan, Hamidreza January 2019 (has links)
Mini-/microchannel components have received attention over the past few decades owing to their compactness and superior thermal performance. Microchannel heat sinks are typically manufactured through traditional manufacturing practices (milling and sawing, electrodischarge machining, and water jet cutting) by changing their components to work in microscale environments or microfabrication techniques (etching and lost wax molding), which have emerged from the semiconductor industry. An extrusion process is used to produce multiport minichannel-based heat exchangers (HXs). However, geometric manufacturing limitations can be considered as drawbacks for all of these techniques. For example, a complex out-of-plane geometry is extremely difficult to fabricate, if not impossible. Such imposed design constraints can be eliminated using additive manufacturing (AM), generally known as three-dimensional (3D) printing. AM is a new and growing technique that has received attention in recent years. The inherent design freedom that it provides to the designer can result in sophisticated geometries that are impossible to produce by traditional technologies and all for the redesign and optimization of existing models. The work presented in this thesis aims to investigate the thermal performance of enhanced minichannel HXs manufactured via metal 3D printing both numerically and experimentally. Rectangular winglet vortex generators (VGs) have been chosen as the thermal enhancement method embedded inside the flat tube. COMSOL Multiphysics, a commercial software package using a finite element method (FEM), has been used as a numerical tool. The influence of the geometric VG parameters on the heat transfer and flow friction characteristics was studied by solving a 3D conjugate heat transfer and laminar flow. The ranges of studied parameters utilized in simulation section were obtained from our previous interaction with various AM technologies including direct metal laser sintering (DMLS) and electron-beam melting (EBM). For the simulation setup, distilled water was chosen as the working fluid with temperaturedependent thermal properties. The minichannel HX was assumed to be made of AlSi10Mg with a hydraulic diameter of 2.86 mm. The minichannel was heated by a constant heat flux of 5 Wcm−2 , and the Reynolds number was varied from 230 to 950. A sensitivity analysis showed that the angle of attack, VG height, VG length, and longitudinal pitch have notable effects on the heat transfer and flow friction characteristics. In contrast, the VG thickness and the distance from the sidewalls do not have a significant influence on the HX performance over the studied range. On the basis of the simulation results, four different prototypes including a smooth channel as a reference were manufactured with AlSi10Mg via DMLS technology owing to the better surface roughness and greater design uniformity. A test rig was developed to test the prototypes. Owing to the experimental facility and working fluid (distilled water), the experiment was categorized as either a simultaneously developing flow or a hydrodynamically developed but thermally developing flow. The Reynolds number ranged from 175 to 1370, and the HX was tested with two different heat fluxes of 1.5 kWm−2 and 3 kWm−2 . The experimental results for the smooth channel were compared to widely accepted correlations in the literature. It was found that 79% of the experimental data were within a range of ±10% of the values from existing correlations developed for the thermal entry length. However, a formula developed for the simultaneously developing flow overpredicted the Nusselt number. Furthermore, the results for the enhanced channels showed that embedding VGs can considerably boost the thermal performance up to three times within the parameters of the printed parts. Finally, the thermal performance of the 3D-printed channel showed that AM is a promising solution for the development of minichannel HXs. The generation of 3D vortices caused by the presence of VGs ii can notably boost the thermal performance, thereby reducing the HX size for a given heat duty.
|
3 |
Modélisation électrochimique du comportement d’une cellule Li-ion pour application au véhicule électrique / Electrochemical modeling of lithium-ion cell behaviour for electric vehiclesFalconi, Andrea 05 October 2017 (has links)
Le développement futur des véhicules électriques est lié à l’amélioration des performances des batteries qu’ils contiennent. Parallèlement aux recherches sur les nouveaux matériaux ayant des performances supérieures en termes d'énergie, de puissance, de durabilité et de coût, il est nécessaire développer des outils de modélisation pour : (i) simuler l'intégration de la batterie dans la chaine de traction et (ii) pour le système de gestion de la batterie, afin d'améliorer la sécurité et la durabilité. Soit de façon directe (par exemple, la prévention de surcharge ou de l’emballement thermique) soit de façon indirecte (par exemple, les indicateurs de l’état de charge). Les modèles de batterie pourraient aussi être utilisés pour comprendre les phénomènes physiques et les réactions chimiques afin d'améliorer la conception des batteries en fonction des besoins de l’utilisateur et de réduire la durée des phases de test. Dans ce manuscrit, un des modèles les plus communs décrivant les électrodes poreuses des batteries au lithium-ion est revisité. De nombreuses variantes dans la littérature s’inspirent directement du travail mené par le professeur J. Newman et son équipe de chercheurs à l’UC Berkeley. Pourtant relativement peu d’études analysent en détail les capacités prédictives de ce modèle. Dans ce travail, pour étudier ce modèle, toutes les grandeurs physiques sont définies sous une forme adimensionnelle, comme on l'utilise couramment dans la mécanique des fluides : les paramètres qui agissent de manière identique ou opposée sont regroupés et le nombre total de paramètres du modèle est considérablement réduit. Cette étude contient une description critique de la littérature incluant le référencement des paramètres du modèle développé par le groupe de Newman et les techniques utilisées pour les mesurer, ainsi que l’écriture du modèle dans un format adimensionnel pour réduire le nombre de paramètres. Une partie expérimentale décrit les modifications de protocoles mis en œuvre pour améliorer la reproductibilité des essais. Les études effectuées sur le modèle concernent d’une part l’identification des états de lithiation dans la cellule avec un attention particulière sur la précision obtenue, et enfin une prospection numérique pour examiner l’influence de chaque paramètre sur les réponses de la batterie en décharge galvanostatique puis en mode impulsion et relaxation. / The future development of electric vehicles is mostly dependent of improvements in battery performances. In support of the actual research of new materials having higher performances in terms of energy, power, durability and cost, it is necessary to develop modeling tools. The models are helpful to simulate integration of the battery in the powertrain and crucial for the battery management system, to improve either direct (e.g. preventing overcharges and thermal runaway) and indirect (e.g. state of charge indicators) safety. However, the battery models could be used to understand its physical phenomena and chemical reactions to improve the battery design according with vehicles requirements and reduce the testing phases. One of the most common model describing the porous electrodes of lithium-ion batteries is revisited. Many variants available in the literature are inspired by the works of prof. J Newman and his research group from UC Berkeley. Yet, relatively few works, to the best of our knowledge, analyze in detail its predictive capability. In the present work, to investigate this model, all the physical quantities are set in a dimensionless form, as commonly used in fluid mechanics: the parameters that act in the same or the opposite ways are regrouped and the total number of simulation parameter is greatly reduced. In a second phase, the influence of the parameter is discussed, and interpreted with the support of the limit cases. The analysis of the discharge voltage and concentration gradients is based on galvanostatic and pulse/relaxation current profiles and compared with tested commercial LGC cells. The simulations are performed with the software Comsol® and the post-processing with Matlab®. Moreover, in this research, the parameters from the literatures are discussed to understand how accurate are the techniques used to parametrize and feed the inputs of the model. Then, our work shows that the electrode isotherms shapes have a significant influence on the accuracy of the evaluation of the states of charges in a complete cell. Finally, the protocols to characterizes the performance of commercial cells at different C-rates are improved to guarantee the reproducibility.
|
4 |
Modifikace struktury křemíkových solárních článků / Modification of silicon solar cells structureStrachala, Dávid January 2014 (has links)
The aim of the work is to create a coherent overview of the silicon monocrystaline solar cell in terms of the physical principle of the structure and sequence of technological operations necessary for its production. The effect of individual manufacturing steps is discussed in relation to the requirement of decreasing recombination, optical and ohmic losses of the monocrystalline solar cell. Due to a theoretical assumption, one-dimensional model of solar cell was created in a PC1D software that was later optimized to achieve the highest possible efficiency. Using the available technologies, final model of the solar cell is manufactured in Solartec company and in the end of the work compared with the output of simulation.
|
Page generated in 0.0744 seconds