• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 48
  • 12
  • 7
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 83
  • 83
  • 82
  • 61
  • 27
  • 14
  • 12
  • 12
  • 11
  • 11
  • 11
  • 10
  • 9
  • 9
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Structure, Dynamics And Thermodynamics Of Confined Water Molecules

Kumar, Hemant 10 1900 (has links) (PDF)
This thesis deals with several aspects of the structure and dynamics of water molecules confined in nanoscopic pores. Water molecules confined in hydrophobic nanocavities exhibit unusual structural and dynamic properties. Confining walls of single-wall carbon nanotubes (SWCNTs) promote strong inter-water hydrogen bonding which in turn leads to several novel structural, dynamic and thermodynamic features not found in bulk water. Confined water molecules form ordered hydrogen-bonded networks, exhibit exceptionally high flow rates as compared to conventional flow in pipes, allow fast proton conduction and exhibit various other anomalous properties. Proteins are known to exploit some of the properties of confined water to perform certain physiological functions. Various properties of confined water can also be exploited in the design of nanofludic devices such as those for desalination and flow sensors. In addition, water molecules confined in SWCNTs and near graphene sheets serve as model systems to study various effects of confinement on the properties of liquids. In this thesis, we present the results of detailed molecular dynamics simulation studies of confined water molecules. In chapter 1, we summarize the findings of existing simulations and experimental studies of bulk and confined water molecules. We also highlight the significance of studying the structure and dynamics of confined water molecules in biological and biotechnological applications. Chapter 2 provides a brief ac-count of the methods and techniques used to perform the simulations described in subsequent chapters of the thesis. We also present a brief overview of the methods used to extract physical properties of water molecules from simulation data, with emphasis on the Two Phase Thermodynamics (2PT) method which we have used to compute the entropy of confined and bulk water molecules. In chapter 3, we discuss the thermodynamics of water entry in SWCNTs of various diameters. Experiments and computer simulations demonstrate that water spontaneously fills the interior of a carbon nanotube. Given the hydrophobic nature of the interior of carbon nanotubes and the strong confinement produced by narrow nanotubes, the spontaneous entry of water molecules in the pores of such nanotubes is surprising. To gain a quantitative thermodynamic understanding of this phenomenon, we use the recently developed Two Phase Thermodynamics (2PT) method to compute translational and rotational entropies of water molecules confined in SWCNTs and show that the increase in energy of a water molecule inside the nanotube is compensated by the gain in its rotational entropy. The confined water is in equilibrium with the bulk water and the Helmholtz free energy per water molecule of confined water is the same as that in the bulk within the accuracy of the simulation results. A comparison of translational and rotational spectra of water molecules confined in carbon nanotubes with those of bulk water shows significant shifts in the positions of spectral peaks that are directly related to the tube radius. These peaks are experimentally accessible and can be used to characterize water dynamics from spectroscopy experiments. We have also computed the free-energy transfer when a bulk water molecule enters a SWCNT for various temperatures and carbon-water interactions. We show that for reduced carbon-oxygen interaction, the free energy transfer is unfavourable and the SWCNT remains unoccupied for significant periods of time. As the temperature is increased, the free energy of confined water becomes unfavourable and reduced occupancy of water is observed. Bulk water exhibits many anomalous properties. No single water model is able to reproduce all properties of bulk water. Different empirical water models have been developed to reproduce different properties of water. In chapter 4, a comparative study of the structure, dynamics and thermodynamic proper-ties of water molecules confined in narrow SWCNTs, obtained from simulations using several water models including polarizable ones, is presented. We show that the inclusion of polarizability quantitatively affects the nature of hydro-gen bonding which governs different properties of water molecules. The SPC/E water model is shown to reproduce results in close agreement with those from polarizable water models with much less computational cost. In chapter 5, we report results obtained from simulations of the properties of water confined in the space between two planar surfaces. We consider three cases: two graphene surfaces, two Boron Nitride (BN) surfaces and one graphene and one BN surface. This is the first detailed study of the behaviour of water near extended BN surfaces. We show that the hydrophilic nature of the BN surface leads to several interesting effects on the dynamics of water molecules near it. We have observed a change in the activation energy, extracted from the temperature dependence of the translational and rotational dynamics, near 280K. This change in activation energy coincides with a change in the structure of the confined sheet of water, indicated by a sudden change in energy. We have also found signatures of glassy dynamics at low temperatures for all three cases, the glassy effects being the strongest for water molecules confined between two BN sheets. These results are similar to those of earlier studies in which novel phases of water have been found for water molecules confined between other surfaces at high pressure. In chapter 6, we have described our observation of a novel phenomenon exhibited by water molecules flowing through a SWCNT under a pressure gradient. We have shown that the flow induces changes in the orientation of the water molecules flowing through the nanotube. In particular, the dipole moments of the water molecules inside the nanotube get aligned along the axis of the nanotube under the effect of the flow. With increasing flow velocities, the net dipole moment first increases and eventually saturates to a constant value. This behaviour is similar to the Langevin theory of paramagnetism with the flow velocity acting as an effective aligning field. Preferential entry of water molecules with dipole moments pointing inward is shown to be the main cause of this effect. This observation provides a way to control the dipolar alignment of water molecules inside nano-channels, with possible applications in nanofluidic devices. Chapter 7 contains a summary of our main results and a few concluding re-marks.
82

Investigation of multicomponent catalyst systems for type-selective growth of SWCNTs by CVD

Motaragheb Jafarpour, Saeed 25 February 2020 (has links)
Excellent electronic properties of semiconducting single-walled carbon nanotubes (sc-SWCNTs) motivated the investigation for using them in different application areas such as microelectronics, sensorics, MEMS and MOEMS. However, challenges arise from the lack of selectivity with respect to electronic type and chirality as well as ensuring high quality, high purity and well-aligned SWCNTs during fabrication process. Catalytic chemical vapour deposition (CCVD) has shown great potential in direct synthesis of high quality SWCNTs with chiral or type selectivity. This thesis addresses three important aspects for growth of sc-SWCNT covering method development for fast screening for complex catalyst systems, process development for type-selective growth of SWCNTs and transfer of processes to a specific CVD reactor capable to scale the processes up to 8-inches wafer embedded in the microtechnologic process line. Multi-wavelengths Raman spectroscopy is applied to analyze type and chiral compositions of SWCNTs. In addition, different microscopic techniques of SEM, TEM and AFM are utilized to analyze surface morphology of catalyst layers and size of the nanoparticles as well as structure-related properties of SWCNTs. Initially, systematic studies on monometallic Co and bimetallic Co-Mo systems with different bilayer thickness configurations and their influences on the properties of grown SWCNTs are conducted on chip level. It is shown by adjusting the catalyst deposition conditions of bilayer catalyst as well as optimization of gas environments in CCVD process, structure-related properties of SWCNTs are dramatically enhanced. Furthermore, by utilizing shutter-assisted sputter deposition of gradient layer catalyst, a fast and efficient method for screening different bilayer configurations of Co-Mo, Co-Ru and Ni-Ru has been developed. By utilizing gradient layer deposition with finely resolved catalyst thicknesses, random network SWCNT is grown on bimetallic Co-Mo system under certain process condition with 45% (at 633 nm) and 75% (at 785 nm) semiconducting enrichment of long and high quality SWCNT. In contrast, bimetallic Co-Ru system under certain process condition is developed to grow in-plane SWCNT with 85% (at 633 nm) and 75% (at 785 nm) semiconducting enrichment of short and low quality SWCNT. In addition, different configurations of the bimetallic Co-Ru system are prepared from salt precursors by spin-coating technique. For a mixture of cobalt (II) chloride and ruthenium (III) nitrosylacetate, random network SWCNT with 70% (at 633 nm) and 95% (at 785 nm) semiconducting enrichment of long SWCNTs with high quality is obtained on wafer level. Random network SWCNT with high degree of semiconducting enrichment is used as channel material for thin-film transistors fabrication that results in CNTFET with on/off ratio in the order of 10*3:Bibliographic description 3 Vorwort 9 List of abbreviations and symbols 11 1 Introduction 15 2 Fundamentals of carbon nanotubes 21 2.1 Chemical bonds in carbon structures 21 2.2 Different allotropes of carbon 22 2.3 History of carbon nanotubes research 23 2.4 Structure of carbon nanotubes 24 2.5 Electronic properties of carbon nanotubes 26 2.6 Synthesis of carbon nanotubes 27 2.7 Growth mechanism of carbon nanotubes by CCVD 29 2.8 Catalyst for CCVD synthesis of SWCNTs 31 2.8.1 Catalyst nanoparticle formation from thin film 32 2.8.2 Mechanism of solid state dewetting 33 2.9 CCVD synthesis of SWCNT 35 2.10 Selective synthesis of SWCNT 37 3 Experimental 39 3.1 Preparation of different catalyst/support systems 39 3.1.1 Homogenous layer of catalyst prepared by PVD 39 3.1.2 Gradient layer deposition of catalyst by IBSD 41 3.1.3 Homogenous layer of catalyst prepared by spin coating 45 3.2 CVD reactors for synthesis of SWCNT 46 3.2.1 R&D vertical flow CVD reactor with showerhead 46 3.2.2 Industrial vertical flow CVD reactor with showerhead 47 3.2.3 Horizontal flow tube CVD reactor 49 3.3 Methods for characterization 50 3.3.1 Atomic force microscopy 50 3.3.2 Raman spectroscopy 50 3.3.3 Spectroscopic ellipsometry 56 3.3.4 X-ray reflection 56 3.3.5 Scanning electron microscopy 56 3.3.6 Transmission electron microscopy 56 4 Growth of SWCNT using PVD catalyst layer in vertical CVD reactor A 57 4.1 Monometallic Co catalyst supported on SiO2 57 4.1.1 Surface and morphological analysis of SiO2/Co 57 4.1.2 Analysis of CCVD grown SWCNT on SiO2/Co 59 4.1.3 Chirality and diameter analysis of SWCNTs on SiO2/Co 61 4.2 Monometallic Co catalyst supported on Al2O3 62 4.2.1 Surface and morphological analysis of Al2O3/Co 62 4.2.2 Analysis of CCVD grown SWCNT on Al2O3/Co 63 4.2.3 Chirality and diameter analysis of SWCNTs on Al2O3/Co 67 4.3 Bimetallic Co-Mo catalyst supported on Al2O3 68 4.3.1 Surface and Morphological analysis of Al2O3/Co-Mo 68 4.3.2 Effect of IBSD deposition parameters on NP formation 71 4.3.3 Analysis of CCVD grown SWCNT on Al2O3/Co-Mo 72 4.3.4 Chirality and diameter analysis of SWCNTs on Al2O3/Co-Mo 76 4.4 Comparison of SWCNT from different catalyst configurations 77 5 Growth of SWCNT using gradient layer of catalyst 79 5.1 Analysis of grown SWCNT on Co-Mo using step gradient A 79 5.2 Analysis of grown SWCNT on Co-Mo using step gradient B 80 5.2.1 Growth of SWCNT by utilizing shutter at position I 80 5.2.2 Growth of SWCNT by utilizing shutter at position II 82 5.2.3 Effect of vacuum breaking on CCVD growth of SWCNT 83 6 Growth of SWCNT using gradient layer catalyst in vertical CVD reactor B 87 6.1 SWCNT growth on gradient layer of monometallic catalyst 87 6.1.1 Analysis of CCVD grown SWCNT on gradient layer of Co 87 6.1.2 Analysis of CCVD grown SWCNT on gradient layer of Ni 89 6.1.3 Comparison of SWCNT properties for monometallic of Ni and Co 90 6.2 SWCNT growth on gradient layer of bimetallic catalyst 92 6.2.1 Analysis of CCVD grown SWCNT on gradient layer of Co-Mo 92 6.2.2 Analysis of CCVD grown SWCNT on gradient layer of Co-Ru 95 6.2.3 Comparison of SWCNTs on Co-Mo and Co-Ru catalyst systems 98 6.2.4 Analysis of CCVD grown SWCNTs on gradient layer of Ni-Ru 100 7 Growth of SWCNT using spin-coated catalyst precursor in horizontal CVD reactor 103 7.1 Effect of CCVD growth temperature on SWCNT properties 103 7.2 Effect of catalyst calcination temperature on SWCNT properties 103 7.3 Analysis of CCVD grown SWCNT on Co and Co-Ru 105 7.3.1 Monolayer configuration of different Co precursors 105 7.3.2 Bilayer configuration of Co and Ru precursors 106 7.3.3 Trilayer configuration of Co and Ru precursors 107 7.3.4 Monolayer configuration of Mixture Co and Ru precursors 109 7.3.5 Comparison of SWCNTs on different catalyst configurations 110 8 Growth of SWCNT using spin-coated catalyst precursor in vertical CVD reactor B 113 8.1 Growth of SWCNT on Mixture of Co and Ru precursors 113 8.2 Effect of CVD reactor geometry on SWCNT properties 115 8.3 Effect of catalyst preparation technique on SWCNT properties 116 8.4 Wafer-level growth of SWCNT on bimetallic Co-Ru 117 9 SWCNT-based device fabrication 119 9.1 Different approaches for SWCNT-based device fabrication 119 9.2 Growth-based technique for SWCNT-based device fabrication 121 9.2.1 FET fabrication on in-plane random network SWCNT 121 9.2.2 FET fabrication on out-of-plane random network SWCNT 123 10 Summary and outlook 127 Appendix 131 Bibliography 171 List of tables 183 List of figures 185 Versicherung 197 Theses 199 Curriculum vitae 201 List of publications 203 / Die hervorragenden elektronischen Eigenschaften von halbleitenden, einwandigen Kohlenstoff-Nanoröhren (sc-SWCNTs haben die Untersuchung dazu veranlasst, sie in verschiedenen Anwendungsbereichen wie der Mikroelektronik, Sensorik, MEMS und MOEMS einzusetzen. Herausforderungen ergeben sich jedoch aus dem Mangel an Selektivität bezüglich elektronischer Bauart und Chiralität sowie der Sicherstellung hoher Qualität, hoher Reinheit und gut aufeinander abgestimmter SWCNTs während des Herstellungsprozesses. Die Katalytische chemische Gasphasenabscheidung (CCVD) zeigt ein großes Potenzial bei der direkten Synthese von hochqualitativen SWCNTs mit Chiraler- oder Typenselektivität. Diese Dissertation behandelt drei wichtige Aspekte für das Wachstum von sc-SWCNT und deckt die Methodenentwicklung des schnellen Screenings für komplexe Katalysatorsysteme, die Prozessentwicklung für das typselektive Wachstum von SWCNTs und die Übertragung von Prozessen in einen spezifischen CVD-Reaktor ab. Der Reaktor, welcher eingebettet in die mikrotechnologische Prozesslinie ist, kann Wafer bis zu 8- Zoll verarbeiten. Raman-Spektroskopie mit mehreren Wellenlängen wird verwendet, um die Zusammensetzung von SWCNTs zu analysieren. Darüber hinaus werden verschiedene mikroskopische Techniken von REM, TEM und AFM verwendet, um die Oberflächenmorphologie von Katalysatorschichten und die Größe der Nanopartikel sowie die strukturbezogenen Eigenschaften von SWCNTs zu analysieren. Zunächst werden systematische Untersuchungen an monometallischen Co- und Bimetall-Co-Mo-Systemen mit unterschiedlichen Doppelschichtdickenkonfigurationen durchgeführt und deren Einfluss auf die Eigenschaften gewachsener SWCNTs auf Chipebene untersucht. Es wird gezeigt, dass durch Einstellung der Katalysatorabscheidungsbedingungen des Doppelschichtkatalysators sowie durch Optimierung der Gasumgebung im CCVD-Prozess die strukturbezogenen Eigenschaften von SWCNTs drastisch verbessert werden können. Darüber hinaus wurde durch die Verwendung eines Gradientenschichtkatalysators, welcher mittels einer Shutter-unterstützten Zerstäubungsabscheidung hergestellt wurde, ein schnelles und effizientes Verfahren zum Untersuchen verschiedener Doppelschichtkonfigurationen von Co-Mo, Co-Ru und Ni-Ru entwickelt. Unter Verwendung der Abscheidung einer Gradientenschicht mit einer fein aufgelösten Katalysatordicke wurden ungerichtete SWCNTs auf einem bimetallischen Co-Mo-System unter definierten Prozessbedingungen mit 45% (bei 633 nm) und 75% (bei 785 nm) halbleitender Anreicherung von langem und hochwertigem SWCNT gezüchtet. Im Gegensatz dazu wird das bimetallische Co-Ru-System unter definierten Prozessbedingungen entwickelt, um SWCNT in der Ebene mit 85% (bei 633 nm) und 75% (bei 785 nm) halbleitender Anreicherung von kurzer und geringer Qualität von SWCNT zu wachsen. Außerdem werden verschiedene Konfigurationen des Bimetall-Co-Ru-Systems aus Salzvorläufern durch Spin-Coating-Technik hergestellt. Es zeigt sich für die Bimetallkonfiguration, die durch Mischung von Cobalt (II) -chlorid und Ruthenium (III) -nitrosylacetat, ein zufälliges Netzwerk SWCNT zu 70% (bei 633 nm) und 95% (bei 785 nm) halbleitender Anreicherung langer SWCNTs mit hohem Anteil hergestellt wurde Qualität wird auf Waferebene gewachsen. Ein zufälliges Netzwerk-SWCNT mit einem hohen Grad an halbleitender Anreicherung wird als Kanalmaterial für die Herstellung von Dünnschichttransistoren verwendet, was zu einem CNTFET mit einem Ein / Aus-Verhältnis um 10*3 führte.:Bibliographic description 3 Vorwort 9 List of abbreviations and symbols 11 1 Introduction 15 2 Fundamentals of carbon nanotubes 21 2.1 Chemical bonds in carbon structures 21 2.2 Different allotropes of carbon 22 2.3 History of carbon nanotubes research 23 2.4 Structure of carbon nanotubes 24 2.5 Electronic properties of carbon nanotubes 26 2.6 Synthesis of carbon nanotubes 27 2.7 Growth mechanism of carbon nanotubes by CCVD 29 2.8 Catalyst for CCVD synthesis of SWCNTs 31 2.8.1 Catalyst nanoparticle formation from thin film 32 2.8.2 Mechanism of solid state dewetting 33 2.9 CCVD synthesis of SWCNT 35 2.10 Selective synthesis of SWCNT 37 3 Experimental 39 3.1 Preparation of different catalyst/support systems 39 3.1.1 Homogenous layer of catalyst prepared by PVD 39 3.1.2 Gradient layer deposition of catalyst by IBSD 41 3.1.3 Homogenous layer of catalyst prepared by spin coating 45 3.2 CVD reactors for synthesis of SWCNT 46 3.2.1 R&D vertical flow CVD reactor with showerhead 46 3.2.2 Industrial vertical flow CVD reactor with showerhead 47 3.2.3 Horizontal flow tube CVD reactor 49 3.3 Methods for characterization 50 3.3.1 Atomic force microscopy 50 3.3.2 Raman spectroscopy 50 3.3.3 Spectroscopic ellipsometry 56 3.3.4 X-ray reflection 56 3.3.5 Scanning electron microscopy 56 3.3.6 Transmission electron microscopy 56 4 Growth of SWCNT using PVD catalyst layer in vertical CVD reactor A 57 4.1 Monometallic Co catalyst supported on SiO2 57 4.1.1 Surface and morphological analysis of SiO2/Co 57 4.1.2 Analysis of CCVD grown SWCNT on SiO2/Co 59 4.1.3 Chirality and diameter analysis of SWCNTs on SiO2/Co 61 4.2 Monometallic Co catalyst supported on Al2O3 62 4.2.1 Surface and morphological analysis of Al2O3/Co 62 4.2.2 Analysis of CCVD grown SWCNT on Al2O3/Co 63 4.2.3 Chirality and diameter analysis of SWCNTs on Al2O3/Co 67 4.3 Bimetallic Co-Mo catalyst supported on Al2O3 68 4.3.1 Surface and Morphological analysis of Al2O3/Co-Mo 68 4.3.2 Effect of IBSD deposition parameters on NP formation 71 4.3.3 Analysis of CCVD grown SWCNT on Al2O3/Co-Mo 72 4.3.4 Chirality and diameter analysis of SWCNTs on Al2O3/Co-Mo 76 4.4 Comparison of SWCNT from different catalyst configurations 77 5 Growth of SWCNT using gradient layer of catalyst 79 5.1 Analysis of grown SWCNT on Co-Mo using step gradient A 79 5.2 Analysis of grown SWCNT on Co-Mo using step gradient B 80 5.2.1 Growth of SWCNT by utilizing shutter at position I 80 5.2.2 Growth of SWCNT by utilizing shutter at position II 82 5.2.3 Effect of vacuum breaking on CCVD growth of SWCNT 83 6 Growth of SWCNT using gradient layer catalyst in vertical CVD reactor B 87 6.1 SWCNT growth on gradient layer of monometallic catalyst 87 6.1.1 Analysis of CCVD grown SWCNT on gradient layer of Co 87 6.1.2 Analysis of CCVD grown SWCNT on gradient layer of Ni 89 6.1.3 Comparison of SWCNT properties for monometallic of Ni and Co 90 6.2 SWCNT growth on gradient layer of bimetallic catalyst 92 6.2.1 Analysis of CCVD grown SWCNT on gradient layer of Co-Mo 92 6.2.2 Analysis of CCVD grown SWCNT on gradient layer of Co-Ru 95 6.2.3 Comparison of SWCNTs on Co-Mo and Co-Ru catalyst systems 98 6.2.4 Analysis of CCVD grown SWCNTs on gradient layer of Ni-Ru 100 7 Growth of SWCNT using spin-coated catalyst precursor in horizontal CVD reactor 103 7.1 Effect of CCVD growth temperature on SWCNT properties 103 7.2 Effect of catalyst calcination temperature on SWCNT properties 103 7.3 Analysis of CCVD grown SWCNT on Co and Co-Ru 105 7.3.1 Monolayer configuration of different Co precursors 105 7.3.2 Bilayer configuration of Co and Ru precursors 106 7.3.3 Trilayer configuration of Co and Ru precursors 107 7.3.4 Monolayer configuration of Mixture Co and Ru precursors 109 7.3.5 Comparison of SWCNTs on different catalyst configurations 110 8 Growth of SWCNT using spin-coated catalyst precursor in vertical CVD reactor B 113 8.1 Growth of SWCNT on Mixture of Co and Ru precursors 113 8.2 Effect of CVD reactor geometry on SWCNT properties 115 8.3 Effect of catalyst preparation technique on SWCNT properties 116 8.4 Wafer-level growth of SWCNT on bimetallic Co-Ru 117 9 SWCNT-based device fabrication 119 9.1 Different approaches for SWCNT-based device fabrication 119 9.2 Growth-based technique for SWCNT-based device fabrication 121 9.2.1 FET fabrication on in-plane random network SWCNT 121 9.2.2 FET fabrication on out-of-plane random network SWCNT 123 10 Summary and outlook 127 Appendix 131 Bibliography 171 List of tables 183 List of figures 185 Versicherung 197 Theses 199 Curriculum vitae 201 List of publications 203
83

Thermo-Mechanische Charakterisierung von Grenzflächen zwischen Einwandigen Kohlenstoffnanoröhren und Metallen mittels Auszugsversuchen / Thermo-Mechanical Characterization of Interfaces between Single-WalledCarbon Nanotubes and Metals by Pull-Out Testing

Hartmann, Steffen 04 February 2016 (has links)
Vor dem Hintergrund zukünftiger Sensoren, basierend auf dem piezoresistiven Effekt von einwandigen Kohlenstoffnanoröhren (SWCNT), werden in dieser Arbeit umfangreiche Ergebnisse zum mechanischen Verhalten von Grenzflächen zwischen SWCNTs und edlen Metallen am Beispiel von Pd und Au präsentiert. Im Fokus steht dabei die Synergie von rechnerischen und experimentellen Methoden Molekulardynamik (MD), nanoskalige Tests und Analytik , um (1) mit guter Genauigkeit maximale Kräfte von gezogenen SWCNTs, welche in Metall eingebettet sind, vorauszuberechnen und (2) einen wertvollen Beitrag zum Verständnis der zu Grunde liegenden Fehlermechanismen zu liefern. Es wurde ein MDModell eines in eine einkristalline Matrix eingebetteten SWCNTs mit Randbedingen eines Auszugsversuchs entwickelt. Mit diesem Modell können Kraft-Weg-Beziehungen und Energieverläufe für einen quasistatischen verschiebungsgesteuerten Auszugsversuch errechnet werden. Das Modell liefert kritische Kräfte bei Versagen des Systems. Des Weiteren können mit diesem Modell der Einfluss des SWCNT-Typus, der Einbettungslänge, der Temperatur, von intrinsischen Defekten und Oberflächengruppen (SFGs) auf das Grenzflächenverhalten untersucht werden. Zum Vergleich wurden kritische Kräfte experimentell durch in situ Auszugsversuche in einem Rasterelektronenmikroskop bestimmt. Es wurde eine sehr gute Übereinstimmung von rechnerischen und experimentellen Daten festgestellt. Der vorherrschende Fehler im Experiment ist der SWCNT-Bruch, jedoch wurden auch einige SWCNT-Auszüge beobachtet. Mit Hilfe der MD-Simulationen wurde gefunden, dass die SFGs als kleine Anker in der umgebenden metallischen Matrix wirken und somit die maximalen Kräfte signifikant erhöhen. Diese Grenzflächenverstärkung kann Zugspannungen verursachen, die genügend hoch sind, so dass SWCNT-Bruch initiert wird. Im Gegensatz dazu zeigten Simulationen von Auszugstests mit idealen SWCNTs nur kleine Auszugskräfte, welche meistens unabhängig von der Einbettungslänge des SWCNTs sind. Dieses Verhalten wird mit einer inkommensurablen Konfiguration der Kristallstrukturen an der Grenzfläche von SWCNTs und der einbettenden Edelmetalle interpretiert. Zur Qualifizierung der Existenz von carboxylatischen Oberflächengruppen auf dem genutzten SWCNT-Material wurden analytische Untersuchungen mittels Fluoreszenzmarkierung von Oberflächengruppen durchgeführt. In Übereinstimmung mit Literaturstellen zum gesicherten Nachweis von SFGs, bedingt durch technologische Behandlungen, weisen diese Experimente stark auf das Vorhandensein von carboxylatischen Oberflächengruppen auf dem genutzten SWCNT-Material hin. Demnach kann der dominante SWCNT-Bruch Fehler durch die Grenzflächenverstärkung auf Grund von SFGs erklärt werden. / In the light of future sensors, that are based upon the piezoresistive effect of singlewalled carbon nanotubes (SWCNTs), this work presents comprehensive results of studies on the mechanical behavior of interfaces between SWCNTs and noble metals using the examples of Pd and Au. With this contribution, the focus is on a synergy between computational and experimental approaches involving molecular dynamics (MD) simulations, nanoscale testing, and analytics (1) to predict to a good degree of accuracy maximum forces of pulled SWCNTs embedded in a noble metal matrix and (2) to provide valuable input to understand the underlying mechanisms of failure. A MD model of a SWCNT embedded in a single crystalline matrix with pull-out test boundary conditions was developed. With this model, force-displacement relations and energy evolutions for a quasi-static displacement controlled test can be computed. The model provides critical forces for failure of the system. Furthermore, the influence of SWCNT type, embedding length, temperature, intrinsic defects and surface functional groups (SFGs) on the interface behavior can be studied using this model. For comparison, critical forces were experimentally determined by conducting pull-out tests in situ, inside a scanning electron microscope. A very good agreement of computational and experimental values was discovered. The dominant failure mode in the experiment was a SWCNT rupture, although several pull-out failures were also observed. From MD simulations, it was found that SFGs act as small anchors in the metal matrix and significantly enhance the maximum forces. This interface reinforcement can lead to tensile stresses sufficiently high to initiate SWCNT rupture. In contrast, pull-out test simulations of ideal SWCNTs show only small pull-out forces, which are mostly independent on SWCNT embedding length. This behavior is interpreted with an incommensurate configuration of crystal structures at the interface between SWCNTs and embedding noble metals. To qualify the existence of carboxylic SFGs on the used SWCNT material, an analytical investigation by means of fluorescence labeling of surface species was performed. In agreement with literature reports on the secured verification of SFGs due to necessary technological treatments, these experiments strongly indicate the presence of carboxylic SFGs on the used SWCNT material. Thus, the dominant SWCNT rupture failure is explained with an interface reinforcement by SFGs.

Page generated in 0.0368 seconds