• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 25
  • 6
  • 5
  • Tagged with
  • 44
  • 44
  • 29
  • 15
  • 14
  • 14
  • 8
  • 8
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

SSB and genetic instability

Andreoni, Federica January 2009 (has links)
Genome stability has great importance in maintaining cell viability and optimal functionality of cellular processes. Loss of genome stability can lead to cell death in the simplest organisms and to deregulation of the cell proliferation machinery in higher organisms, potentially causing cancer or morbid states. The Single Stranded DNA Binding (SSB) protein of Escherichia coli is an essential protein that binds and stabilises ssDNA stretches. Its role is particularly crucial during DNA replication, recombination and repair processes and it has therefore been predicted to play a prominent role in the maintenance of genome stability. The role of SSB in genome instability was investigated using an E. coli strain in which, the expression of the ssb gene was placed under the control of the arabinose promoter. The level of SSB protein present in the cell could therefore be tuned by varying the arabinose concentration in the medium. A wide characterisation of the behaviour of the strain at low SSB level was carried out. Viability and growth tests showed that a threshold level of protein is required to allow normal growth. Microscopy analyses were carried out to follow cell division, nucleoid morphology and SOS response activation. Cells grown at low SSB level, showed a phenotype consistent with impaired cell division and altered nucleoid morphology. The SOS response was activated at low SSB levels and cell elongation was detected. Lowering the arabinose concentration in solid medium allowed the selection of suppressor strains that could form colonies under the new conditions. Sequencing of the entire genome of one such suppressor strain was carried out revealing a possible candidate for the phenotype change. The stability of a 105bp and of a 246bp DNA imperfect palindromes and the stability of CAG·CTG trinucleotide repeat arrays, inserted in the E. coli chromosome, were investigated in correlation to the SSB cellular level. Lowering the SSB level in cells grown on solid medium, increased the instability of the 105bp palindrome presumably by increasing the number of slippage events. On the other hand, SSB overexpression did not have an effect on the stability of the 246bp palindrome. The stability of a leading strand (CAG)75 repeat array was highly increased by overexpressing SSB, while the same effect was not observed for a leading strand (CTG)137 repeat array. Furthermore, excess SSB caused a change in the deletion size distribution profile for the leading strand (CAG)75 strain, lowering the bias towards big deletions. This is consistent with SSB being able to preferentially impede the formation of big DNA hairpins. Also, SbcCD nuclease was shown to have an effect on the deletion size distribution profile of the leading strand (CTG)137 strain. The lack of SbcCD led to a slight reduction of the number of big deletions.
2

Single-stranded heteroduplex intermediates in lambda Red homologous recombination

Stewart, A. Francis, Maresca, Marcello, Erler, Axel, Friedrich, Anne, Fu, Jun, Zhang, Youming 01 October 2015 (has links) (PDF)
Background The Red proteins of lambda phage mediate probably the simplest and most efficient homologous recombination reactions yet described. However the mechanism of dsDNA recombination remains undefined. Results Here we show that the Red proteins can act via full length single stranded intermediates to establish single stranded heteroduplexes at the replication fork. We created asymmetrically digestible dsDNA substrates by exploiting the fact that Redα exonuclease activity requires a 5' phosphorylated end, or is blocked by phosphothioates. Using these substrates, we found that the most efficient configuration for dsDNA recombination occurred when the strand that can prime Okazaki-like synthesis contained both homology regions on the same ssDNA molecule. Furthermore, we show that Red recombination requires replication of the target molecule. Conclusions Hence we propose a new model for dsDNA recombination, termed "beta" recombination, based on the formation of ssDNA heteroduplexes at the replication fork. Implications of the model were tested using (i) an in situ assay for recombination, which showed that recombination generated mixed wild type and recombinant colonies; and (ii) the predicted asymmetries of the homology arms, which showed that recombination is more sensitive to non-homologies attached to 5' than 3' ends. Whereas beta recombination can generate deletions in target BACs of at least 50 kb at about the same efficiency as small deletions, the converse event of insertion is very sensitive to increasing size. Insertions up to 3 kb are most efficiently achieved using beta recombination, however at greater sizes, an alternative Red-mediated mechanism(s) appears to be equally efficient. These findings define a new intermediate in homologous recombination, which also has practical implications for recombineering with the Red proteins.
3

Helicase-SSB Interactions In Recombination-Dependent DNA Repair and Replication

Jordan, Christian 01 January 2014 (has links)
Dda, one of three helicases encoded by bacteriophage T4, has been well- characterized biochemically but its biological role remains unclear. It is thought to be involved in origin-dependent replication, recombination-dependent replication, anti- recombination, recombination repair, as well as in replication fork progression past template-bound nucleosomes and RNA polymerase. One of the proteins that most strongly interacts with Dda, Gp32, is the only single-stranded DNA binding protein (SSB) encoded by T4, is essential for DNA replication, recombination, and repair. Previous studies have shown that Gp32 is essential for Dda stimulation of replication fork progression. Our studies show that interactions between Dda and Gp32 play a critical role in regulating replication fork restart during recombination repair. When the leading strand polymerase stalls at a site of ssDNA damage and the lagging strand machinery continues, Gp32 binds the resulting ssDNA gap ahead of the stalled leading strand polymerase. We found that a Gp32 cluster on leading strand ssDNA blocks Dda loading on the lagging strand ssDNA, blocks stimulation of fork progression by Dda, and stimulates Dda to displace the stalled polymerase and the 3' end of the daughter strand. This unwinding generates conditions necessary for polymerase template switching in order to regress the DNA damage-stalled replication fork. Helicase trafficking by Gp32 could play a role in preventing premature fork progression until the events required for error-free translesion DNA synthesis have taken place. Interestingly, we found that Dda helicase activity is strongly stimulated by the N-terminal deletion mutant Gp32-B, suggesting the N-terminal truncation to generate Gp32-B reveals a cryptic helicase stimulatory activity of Gp32 that may be revealed in the context of a moving polymerase, or through direct interactions of Gp32 with other replisome components. Additionally, our findings support a role for Dda-Gp32 interactions in double strand break (DSB) repair by homology-directed repair (HDR), which relies on homologous recombination and the formation of a displacement loop (D-loop) that can initiate DNA synthesis. We examined the D-loop unwinding activity of Dda, Gp41, and UvsW, the D-loop strand extension activity of Gp43 polymerase, and the effect of the helicases and their modulators on D-loop extension. Dda and UvsW, but not Gp41, catalyze D-loop invading strand by DNA unwinding. The relationship between Dda and Gp43 was modulated by the presence of Gp32. Dda D-loop unwinding competes with D- loop extension by Gp43 only in the presence of Gp32, resulting in a decreased frequency of invading strand extension when all three proteins are present. These data suggest Dda functions as an antirecombinase and negatively regulates the replicative extension of D- loops. Invading strand extension is observed in the presence of Dda, indicating that invading strand extension and unwinding can occur in a coordinated manner. The result is a translocating D-loop, called bubble migration synthesis, a hallmark of break-induced repair (BIR) and synthesis dependent strand annealing (SDSA). Gp41 did not unwind D- loops studied and may serve as a secondary helicase loaded subsequent to D-loop processing by Dda. Dda is proposed to be a mixed function helicase that can work both as an antirecombinase and to promote recombination-dependent DNA synthesis, consistent with the notion that Dda stimulates branch migration. These results have implications on the repair of ssDNA damage, DSB repair, and replication fork regulation, which are highly conserved processes sustained in all organisms.
4

Functional analysis of a plant virus replication 'factory' using live cell imaging

Linnik, Volha January 2010 (has links)
Plant viruses have developed a number of strategies that enable them to become obligate intracellular parasites of many agricultural crops. Potato virus X (PVX) belongs to a group of positive-sense, single-stranded plant RNA viruses that replicate on host membranes and form elaborate structures known as viral replication complexes (VRCs) that contain viral RNA (vRNA), proteins and host cellular components. VRCs are the principal sites of viral genome replication, virion assembly and packaging of vRNA for export into neighbouring cells. For many animal viruses, host membrane association is crucial for RNA export. For plant viruses, it is not yet known how vRNA is transported to and through plant plasmodesmata. PVX encodes genetic information required for its movement between cells; three viral triple gene block (TGB) movement proteins and a viral coat protein are essential for viral trafficking. This research project studies the relationship between PVX and its host plants, Nicotiana benthamina and Nicotiana tabacum. A particular focus of this project is exploration of the structural and functional significance of the PVX VRC and how the virus recruits cell host components for its replication and movement between cells. The role of specific viral proteins in establishing the VRC, and the ways in which these interact with host organelles, was investigated. A combination of different approaches was used, including RNA-binding dyes and a Pumilio-based bimolecular fluorescence complementation assay for detection of the vRNA, fluorescent reporters for virusencoded proteins, fluorescent reporters for host organelles involved in viral replication, and also transgenic tobacco plants expressing reporters for specific plant components (endoplasmic reticulum, Golgi, actin, microtubules and plasmodesmata). In addition, mutagenesis was used to study the functions of individual viral proteins in replication and movement. All of these approaches were combined to achieve live-cell imaging of the PVX infection process. The PVX VRC was shown to be a highly compartmentalised structure; (+)-stranded vRNA was concentrated around the viral TGB1 protein, which was localised in discrete circular compartments within the VRC while coat protein was localised to the external edges of the VRC. The vRNA was closely associated with host components (endoplasmic reticulum and actin) shown to be involved in the formation of the VRC. The TGB2/TGB3 viral proteins were shown to colocalise with the host endomembranes (ER) and to exit these compartments in the form of motile granules. vRNA, TGB1, TGB2 and CP localised to plasmodesmata of the infected cells. TGB1 was shown to move cell-to-cell and recruit ER, Golgi and actin in the absence of viral infection. In the presence of virus, TGB1 targeted the VRCs in several neighbouring cells. A model of PVX replication and movement is proposed in which TGB1 functions as a key component for recruitment of host components into the VRC to enable viral replication and spread.
5

Some Aspects of Physicochemical Properties of DNA and RNA

Acharya, Sandipta January 2006 (has links)
<p>This thesis is based on nine research publications (<b>I – IX</b>) on structure and reactivity of RNA vis-à-vis DNA. The DNA and RNA are made of flexible pentose sugar units, polyelectrolytic phosphodiester backbone, and heterocyclic nucleobases. DNA stores our genetic code, whereas RNA is involved both in protein biosynthesis and catalysis. Various ligand-binding and recognition properties of DNA/RNA are mediated through inter- and intra-molecular H-bonding and stacking interactions, beside hydration, van der Waal and London dispersion forces. In this work the pH dependant chemical shift, p<i>K</i><sub>a</sub> values of 2'-OH group as well as those the nucleobases in different sequence context, alkaline hydrolysis of the internucleotidic phosphodiester bonds and analysis of NOESY footprints along with NMR constrained molecular dynamics simulation were used as tools to explore and understand the physico-chemical behavior of various nucleic acid sequences, and the forces involved in their self-assembly process. <b>Papers I – II</b> showed that the ionization of 2'-OH group is nucleobase-dependant. <b>Paper III</b> showed that the chemical characters of internucleotidic phosphate are non-identical in RNA compared to that of DNA. <b>Papers IV – VI</b> show that variable intramolecular electrostatic interactions between electronically coupled nearest neighbor nucleobases in a ssRNA can modulate their respective pseudoaromatic character, and result in creation of a unique set of aglycons with unique properties depending on propensity and geometry of nearest neighbor interaction. <b>Paper VII</b> showed that the cross-modulation of the pseudoaromatic character of nucleobases by the nearest neighbor is sequence-dependant in nature in oligonucleotides. <b>Paper VIII</b> showed that the purine-rich hexameric ssDNA and ssRNA retain the right-handed helical structure (B-type in ssDNA and A-type in ssRNA) in the single-stranded form even in absence of intermolecular hydrogen bonding. The directionality of stacking geometry however differs in ssDNA compared to ssRNA. In ssDNA the relatively electron-rich imidazole stacks above the electron-deficient pyrimidine in the 5' to 3' direction, in contradistinction, the pyrimidine stacks above the imidazole in the 5' to 3' direction in ssRNA. <b>Paper IX</b> showed that the p<i>K</i><sub>a</sub> values of the nucleobases in monomeric nucleotides can be used to show that a RNA-RNA duplex is more stable than a DNA-DNA duplex. The dissection of the relative strength of base-pairing and stacking showed that the relative contribution of former compared to that of the latter in an RNA-RNA over the corresponding DNA-DNA duplexes decreases with the increasing content of A-T/U base pairs in a sequence.</p>
6

Mechanisms and DNA Specificity in Site-specific Recombination of Integron Cassettes

Johansson, Carolina January 2007 (has links)
<p>Bacterial resistance to antibiotics has become a serious problem. This is due to the remarkable ability of bacteria to respond and rapidly adapt to environmental changes. Integrons are elements with the capacity for gene capture by an integron-encoded site-specific recombinase called IntI. IntI binds and acts at the recombination sites, <i>attI </i>and<i> attC</i> resulting in excision and integration of short DNA elements called gene cassettes carrying an <i>attC</i> site in the 3’ end. Several families of antibiotic resistance genes are borne on gene cassettes in integrons connected to mobile elements. Other cassettes reside in the larger and ancestral superintegrons located on chromosomes in both pathogenic and environmental bacteria. Due to their close connection with lateral gene transfer systems, it is possible that integrons are functionally dependent on those networks. This work presents arguments for such connections. The<i> attC</i> of the <i>aadA1-qacE</i> cassette junction in Tn<i>21</i> was characterized in detail. Like other <i>attC</i> sites, it contains two pairs of inverted repeats and is almost palindromic. By using electrophoretic mobility shift assays, this study showed that IntI1 binds only to the bottom strand of <i>attC</i>. Upon folding the strand into a hairpin, a few chiral hairpin distortions define both the strand choice and also the appropriate orientation of the highly symmetrical site. Structural recognition also explains the wide sequence variation among <i>attC</i> sites. We have documented the initial cleavage step in recombination in IntI extracts and integrase levels in extracts were evaluated by a new method. Mutagenesis and homology modelling were performed to find amino acid residues in IntI1 that are important for recognition of <i>attC</i> hairpin-DNA. Comparisons were made with other tyrosine family members to explain how integron integrases differ in site-recognition and also in their mechanism of strand exchange.</p>
7

Mechanisms and DNA Specificity in Site-specific Recombination of Integron Cassettes

Johansson, Carolina January 2007 (has links)
Bacterial resistance to antibiotics has become a serious problem. This is due to the remarkable ability of bacteria to respond and rapidly adapt to environmental changes. Integrons are elements with the capacity for gene capture by an integron-encoded site-specific recombinase called IntI. IntI binds and acts at the recombination sites, attI and attC resulting in excision and integration of short DNA elements called gene cassettes carrying an attC site in the 3’ end. Several families of antibiotic resistance genes are borne on gene cassettes in integrons connected to mobile elements. Other cassettes reside in the larger and ancestral superintegrons located on chromosomes in both pathogenic and environmental bacteria. Due to their close connection with lateral gene transfer systems, it is possible that integrons are functionally dependent on those networks. This work presents arguments for such connections. The attC of the aadA1-qacE cassette junction in Tn21 was characterized in detail. Like other attC sites, it contains two pairs of inverted repeats and is almost palindromic. By using electrophoretic mobility shift assays, this study showed that IntI1 binds only to the bottom strand of attC. Upon folding the strand into a hairpin, a few chiral hairpin distortions define both the strand choice and also the appropriate orientation of the highly symmetrical site. Structural recognition also explains the wide sequence variation among attC sites. We have documented the initial cleavage step in recombination in IntI extracts and integrase levels in extracts were evaluated by a new method. Mutagenesis and homology modelling were performed to find amino acid residues in IntI1 that are important for recognition of attC hairpin-DNA. Comparisons were made with other tyrosine family members to explain how integron integrases differ in site-recognition and also in their mechanism of strand exchange.
8

In vitro Condensation of Mixed-Stranded DNA

Santai, Catherine Theresa 20 November 2006 (has links)
DNA condensation is the process in which an anionic polymer in combination with condensing agents undergoes a drastic reduction in volume and collapses into ordered structures. Double-stranded DNA has a uniform helical secondary structure, whereas single-stranded DNA is complex and adopts numerous different conformations. Novel mixed-stranded DNA molecules, with defined regions of both single-stranded and double-stranded secondary structures attached to one another in the same molecule, were created in this body of work. Mixed-stranded DNA was designed to be intermediate between its parent secondary structures in order to discover if mixed-stranded DNA will find a balance in terms of condensation properties as well. Mixed-stranded DNA was found to condense into minimally aggregated, globular particles in the presence of low mM concentrations of divalent transition metals in aqueous solvent at room temperature, a property not observed for either pure dsDNA or ssDNA. A model is presented to describe how mixed-stranded DNA -Mn2+, -Ni2+, and -Cd2+ condensates with the observed properties are produced. Multivalent-induced condensation of mixed-stranded DNA is also characterized and found to involve an unusual rod-like morphology in order to accommodate the secondary structures condensing independent of one another at different concentrations of multivalent cations. The attachment of a ss region to an otherwise ds molecule was found to greatly influence condensation properties of the entire molecule.
9

Enhancing Virus Surveillance through Metagenomics: Water Quality and Public Health Applications

Rosario-Cora, Karyna 28 October 2010 (has links)
Monitoring viruses circulating in the human population and the environment is critical for protecting public and ecosystem health. The goal of this dissertation was to incorporate a viral metagenomic approach into virus surveillance efforts (both clinical and water quality control programs) to enhance traditional virus detection methods. Clinical surveillance programs are designed to identify and monitor etiological agents that cause disease. However, the ability to identify viruses may be compromised when novel or unsuspected viruses are causing infection since traditional virus detection methods target specific known pathogens. Here we describe the successful application of viral metagenomics in a clinical setting using samples from symptomatic patients collected through the Enterovirus Surveillance (EVS) program in the Netherlands (Appendix A). Despite extensive PCR-based testing, the viruses in a small percentage of these samples (n = 7) remained unidentified for more than 10 years after collection. Viral metagenomics allowed the identification of viruses in all seven samples within a week using minimal sequencing, thus rapidly filling the diagnostic gap. The unexplained samples contained BK polyomavirus, Herpes simplex virus, Newcastle disease virus and the recently discovered Saffold viruses (SAFV) which dominated the unexplained samples (n = 4). This study demonstrated that metagenomic analyses can be added as a routine tool to investigate unidentified viruses in clinical samples in a public-health setting. In addition, metagenomic data gathered for SAFV was used to complete four genotype 3 SAFV (SAFV-3) genomes through primer walking, doubling the number of SAFV-3 full genomic sequences in public databases. In addition to monitoring viruses in symptomatic patients, it is also important to monitor viruses in wastewater (raw and treated) to protect the environment from biological contamination and prevent further spread of pathogens. To gain a comprehensive understanding of viruses that endure wastewater treatment, viral metagenomics was used to survey the total DNA and RNA viral community in reclaimed water (the reusable end-product of wastewater treatment) (Appendix B). Phages (viruses that infect bacteria) dominated the DNA viral community while eukaryotic viruses similar to known plant and insect viruses dominated RNA metagenomic libraries suggesting that highly stable viruses may be disseminated through this alternative water supply. A plant virus, the Pepper mild mottle virus (PMMoV), was identified as a potential indicator of wastewater contamination based on metagenomic data and quantitative PCR assays (Appendix C). The metagenomic analysis also revealed a wealth of novel single-stranded DNA (ssDNA) viruses in reclaimed water. Further investigation of sequences with low-level similarities to known ssDNA viruses led to the completion of ten novel ssDNA genomes from reclaimed water and marine environments (Appendix D). Unique genome architectures and phylogenetic analysis suggest that these ssDNA viruses belong to new viral genera and/or families. To further explore the ecology of the novel ssDNA viruses, a strategy was developed to take metagenomic analysis to the next level by combining expression analysis and immunotechnology (Appendix E). This dissertation made a significant contribution to current microbiological data regarding wastewater by uncovering viruses that endure the wastewater treatment and identifying a new viral bioindicator.
10

Some Aspects of Physicochemical Properties of DNA and RNA

Acharya, Sandipta January 2006 (has links)
This thesis is based on nine research publications (I – IX) on structure and reactivity of RNA vis-à-vis DNA. The DNA and RNA are made of flexible pentose sugar units, polyelectrolytic phosphodiester backbone, and heterocyclic nucleobases. DNA stores our genetic code, whereas RNA is involved both in protein biosynthesis and catalysis. Various ligand-binding and recognition properties of DNA/RNA are mediated through inter- and intra-molecular H-bonding and stacking interactions, beside hydration, van der Waal and London dispersion forces. In this work the pH dependant chemical shift, pKa values of 2'-OH group as well as those the nucleobases in different sequence context, alkaline hydrolysis of the internucleotidic phosphodiester bonds and analysis of NOESY footprints along with NMR constrained molecular dynamics simulation were used as tools to explore and understand the physico-chemical behavior of various nucleic acid sequences, and the forces involved in their self-assembly process. Papers I – II showed that the ionization of 2'-OH group is nucleobase-dependant. Paper III showed that the chemical characters of internucleotidic phosphate are non-identical in RNA compared to that of DNA. Papers IV – VI show that variable intramolecular electrostatic interactions between electronically coupled nearest neighbor nucleobases in a ssRNA can modulate their respective pseudoaromatic character, and result in creation of a unique set of aglycons with unique properties depending on propensity and geometry of nearest neighbor interaction. Paper VII showed that the cross-modulation of the pseudoaromatic character of nucleobases by the nearest neighbor is sequence-dependant in nature in oligonucleotides. Paper VIII showed that the purine-rich hexameric ssDNA and ssRNA retain the right-handed helical structure (B-type in ssDNA and A-type in ssRNA) in the single-stranded form even in absence of intermolecular hydrogen bonding. The directionality of stacking geometry however differs in ssDNA compared to ssRNA. In ssDNA the relatively electron-rich imidazole stacks above the electron-deficient pyrimidine in the 5' to 3' direction, in contradistinction, the pyrimidine stacks above the imidazole in the 5' to 3' direction in ssRNA. Paper IX showed that the pKa values of the nucleobases in monomeric nucleotides can be used to show that a RNA-RNA duplex is more stable than a DNA-DNA duplex. The dissection of the relative strength of base-pairing and stacking showed that the relative contribution of former compared to that of the latter in an RNA-RNA over the corresponding DNA-DNA duplexes decreases with the increasing content of A-T/U base pairs in a sequence.

Page generated in 0.0986 seconds