• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Caraterização Elétrica dos sistemas cerâmicos de La(2/3-X)Li3XTiO3 e Li2TiO3 / Electrical Characterization of the ceramic systems of (2/3-X) Li3XTiO3 and Li2TiO3

Pereira, Jonathas da Silva, 91983401246 05 July 2018 (has links)
Submitted by jonathas pereira (jonathas.fisika@gmail.com) on 2018-09-10T15:05:32Z No. of bitstreams: 4 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) CartaEncaminhamentoAutodepósito.pdf: 119487 bytes, checksum: 9b563814692b2ce6dbc82514ffcf0707 (MD5) ATA.jpeg: 49716 bytes, checksum: 3a8de13cb07ee1feebbd6e0a51c656c3 (MD5) Dissertação Jonathas.pdf: 2710163 bytes, checksum: a9190f2ba73a3436ce3302a5aacc65ca (MD5) / Rejected by PPGFIS Física (ppgfisufam.sec@gmail.com), reason: A ata de defesa está incompleta. Favor, anexar a ata escaneada e com todas as folhas. on 2018-09-18T12:44:36Z (GMT) / Submitted by jonathas pereira (jonathas.fisika@gmail.com) on 2018-09-21T19:50:43Z No. of bitstreams: 4 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) CartaEncaminhamentoAutodepósito.pdf: 119487 bytes, checksum: 9b563814692b2ce6dbc82514ffcf0707 (MD5) Dissertação Jonathas.pdf: 2710163 bytes, checksum: a9190f2ba73a3436ce3302a5aacc65ca (MD5) ATA.pdf: 743829 bytes, checksum: 223c28c1d6ef852fbe5579c3df422b19 (MD5) / Rejected by PPGFIS Física (ppgfisufam.sec@gmail.com), reason: A dissertação deve conter a ficha catalográfica. Favor inserir no arquivo pdf. on 2018-09-24T18:15:50Z (GMT) / Submitted by jonathas pereira (jonathas.fisika@gmail.com) on 2018-09-24T19:23:20Z No. of bitstreams: 5 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) CartaEncaminhamentoAutodepósito.pdf: 119487 bytes, checksum: 9b563814692b2ce6dbc82514ffcf0707 (MD5) Dissertação Jonathas.pdf: 2710163 bytes, checksum: a9190f2ba73a3436ce3302a5aacc65ca (MD5) ATA.pdf: 743829 bytes, checksum: 223c28c1d6ef852fbe5579c3df422b19 (MD5) ficha catalográfica.pdf: 1871 bytes, checksum: 906fcee7edcb336f76527ba871b308e8 (MD5) / Approved for entry into archive by PPGFIS Física (ppgfisufam.sec@gmail.com) on 2018-09-24T19:25:42Z (GMT) No. of bitstreams: 5 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) CartaEncaminhamentoAutodepósito.pdf: 119487 bytes, checksum: 9b563814692b2ce6dbc82514ffcf0707 (MD5) Dissertação Jonathas.pdf: 2710163 bytes, checksum: a9190f2ba73a3436ce3302a5aacc65ca (MD5) ATA.pdf: 743829 bytes, checksum: 223c28c1d6ef852fbe5579c3df422b19 (MD5) ficha catalográfica.pdf: 1871 bytes, checksum: 906fcee7edcb336f76527ba871b308e8 (MD5) / Approved for entry into archive by Divisão de Documentação/BC Biblioteca Central (ddbc@ufam.edu.br) on 2018-09-24T19:52:59Z (GMT) No. of bitstreams: 5 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) CartaEncaminhamentoAutodepósito.pdf: 119487 bytes, checksum: 9b563814692b2ce6dbc82514ffcf0707 (MD5) Dissertação Jonathas.pdf: 2710163 bytes, checksum: a9190f2ba73a3436ce3302a5aacc65ca (MD5) ATA.pdf: 743829 bytes, checksum: 223c28c1d6ef852fbe5579c3df422b19 (MD5) ficha catalográfica.pdf: 1871 bytes, checksum: 906fcee7edcb336f76527ba871b308e8 (MD5) / Made available in DSpace on 2018-09-24T19:52:59Z (GMT). No. of bitstreams: 5 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) CartaEncaminhamentoAutodepósito.pdf: 119487 bytes, checksum: 9b563814692b2ce6dbc82514ffcf0707 (MD5) Dissertação Jonathas.pdf: 2710163 bytes, checksum: a9190f2ba73a3436ce3302a5aacc65ca (MD5) ATA.pdf: 743829 bytes, checksum: 223c28c1d6ef852fbe5579c3df422b19 (MD5) ficha catalográfica.pdf: 1871 bytes, checksum: 906fcee7edcb336f76527ba871b308e8 (MD5) Previous issue date: 2018-07-05 / The complex impedance spectroscopy technique was used to perform the electrical characterization of two ceramic systems: Lithium Titanate Lanthanum - La (2/3-X) Li3XTiO3 (LLTO) and Lithium Titanate - Li2TiO3 (LTO). The study is done on two samples for each system, LLTO (La0.59Li0.24TiO3 and La0.56Li0.33TiO3) and LTO (milled and unground). LLT nanoparticle powders were obtained by high energy milling (MAE) and sintered by Spark Plasma Sintering (SPS). On the other hand, the LTO was subjected to high energy grinding to reduce particle size and sintered by the conventional sintering method. The electrical response of both systems (LLTO and LTO) was studied, with the differential of evaluating the electrical properties in each case. Complex impedance measurements were performed in the frequency range of 1 Hz to 10 MHz and in a temperature range from room temperature to 270 ° C. Three models were used for experimental data processing, the equivalent circuit model, the extended Jonscher universal law and the derivative method. By means of the three models, it was possible to obtain the conductivity of DC and to study the contributions to the total conductivity, grain and grain boundary of the LLTO. While the LTO was studied in the frequency range of 1 Hz to 1 MHz, in the temperature range of 25 ° C to 200 ° C. The effect of grinding on ionic conductivity was verified in the LTO system. The intrinsic conductivity of LLTO (x = 0.08) was in the order of 10E-5 to 10E-3 S / cm in the temperature range studied. For the LTO the intrinsic ionic conductivity was of the order of 10E-10 to 10E-7 S/cm. In addition, the Arrhenius equation allowed to determine the total activation energy (Ea) of each contribution of both the LLTO and the LTO. For La0.59Li0.24TiO3, Ea values ​​of 0.394, 0.393 and 0.208 eV were obtained for the total volume, grain and grain frontier, respectively. Indicating that for the LLTO system the conductive mechanism is determined by the mobility of Li + ions. For the LTO without and with milling, activation energy of the total sample of approximately 0.69 and 0.687 eV, respectively, was obtained. These values ​​are associated with a mechanism of conduction by simply ionized oxygen vacancies. / A técnica de espectroscopia de impedância complexa foi usada para realizar a caracterização elétrica de dois sistemas cerâmicos: Titanato de Lítio Lantânio - La(2/3-X)Li3XTiO3 (LLTO) e Titanato de Lítio – Li2TiO3 (LTO). O estudo é feito sobre duas amostras para cada sistema, LLTO (La0,59Li0,24TiO3 e La0,56Li0,33TiO3) e LTO (moído e não moído). Os pós de nanopartículas de LLTO foram obtidos por moagem de altas energias (MAE) e sinterizados via Spark Plasma Sintering (SPS). Por outro lado, o LTO foi submetido à moagem de altas energias para reduzir o tamanho das partículas e sinterizado pelo método de sinterização convencional. A resposta elétrica de ambos os sistemas (LLTO e LTO) foi estudada, com o diferencial de avaliar as propriedades elétricas em cada caso. Medidas de impedância complexa foram realizadas na faixa de frequência de 1 Hz a 10 MHz e num intervalo de temperatura desde a temperatura ambiente até 270 °C. Três modelos foram usados para o processamento dos dados experimentais, o modelo do circuito equivalente, a lei universal de Jonscher estendida e o método da derivada. Por meio dos três modelos, foi possível obter a condutividade de DC e estudar as contribuições para a condutividade total, do grão e da fronteira de grão do LLTO. Enquanto o LTO foi estudado na faixa de frequência de 1 Hz a 1 MHz, no intervalo de temperatura de 25 °C a 200 °C. O efeito da moagem sobre a condutividade iônica foi verificado no sistema LTO. A condutividade intrínseca do LLTO (x = 0,08) foi da ordem de 10-5 a 10-3 S/cm na faixa de temperatura estudada. Para o LTO a condutividade iônica intrínseca foi da ordem de 10-10 a 10-7 S/cm. Além disso, a equação de Arrhenius permitiu determinar a energia de ativação total (Ea) de cada contribuição tanto do LLTO, quanto do LTO. Para La0,59Li0,24TiO3, valores de Ea de 0,394, 0,393 e 0,208 eV foram obtidos para o volume total, fronteira de grão e grão, respectivamente. Indicando que para o sistema LLTO o mecanismo condutivo é determinado pela mobilidade de íons Li+. Para o LTO sem e com moagem foram obtidos energia de ativação da amostra total de aproximadamente de 0,69 e 0,687 eV, respectivamente. Estes valores estão associados a um mecanismo de condução por vacantes de oxigênio simplesmente ionizado.
2

Síntese e processamento de compósito cerâmico zircônia-grafeno / Synthesis and processing of zirconia-graphene ceramic composite

Manarão, Diego Santos 27 February 2018 (has links)
O objetivo desse trabalho foi desenvolver um compósito cerâmico de zircônia-grafeno para aplicação odontológica. Este estudo avaliou o efeito do pó de partida, concentração de grafeno e da temperatura de sinterização sobre as propriedades mecânicas (dureza e tenacidade à fratura) do compósito desenvolvido. Para isto foram sintetizados os pós de Y-TZP a partir de soluções de óxido-cloreto de zircônio e cloreto de ítrio na proporção desejada de 3mol% através da rota de co-precipitação em solução de hidróxido de amônio seguido por uma série de lavagens em água, etanol e butanol com posterior destilação azeotrópica, secagem, moagem e calcinação. O grafeno foi obtido a partir da exfoliação química de grafite pelo método de Hummers [40] modificado por Marcano [39], o que resultou em um gel acastanhado que foi submetido a lavagem por centrifugação, secagem e desaglomeração em almofariz de ágata, resultando, por fim, no óxido de grafeno. Uma segunda etapa foi o processo de redução química com ácido ascórbico para obtenção de óxido de grafeno reduzido, um pó de coloração escura que foi adicionado à Y-TZP para a obtenção do compósito nas diversas concentrações (em mol%) que foram estudadas: (0,01%, 0,05%, 0,10%, 0,50%, 1,00% e 2,00%). Os pós foram caracterizados por termogravimetria, difração de raios X e espectroscopia (FT-IR). Os espécimes foram confeccionados em matriz metálica cilíndrica e sinterizados em forno tubular em atmosfera inerte. Outros espécimes foram confeccionados em matriz de grafite de alta densidade e sinterizados por Spark Plasma Sintering (SPS). Todas as amostras foram caracterizadas por meio de ensaios de densidade, dureza Vickers, tenacidade à fratura e microscopia eletrônica de varredura. Os maiores valores de densidade relativa foram observados para as amostras sinterizadas em SPS, sendo que se obteve valor de densidade relativa de 98,7 % para a concentração de 0,50% de grafeno e 98,4% para a Y-TZP pura. Por outro lado, o maior valor encontrado em sinterização em atmosfera a 1400°C sem a presença de H2 para Y-TZP pura foi da ordem de 96,76%. Os valores de dureza foram maiores nas amostras sinterizadas em SPS, no entanto a tenacidade à fratura mostrou não se alterar em função do conteúdo de grafeno. As fotomicrografias de MEV mostraram que houve uma variação de tamanho de grão de acordo com a presença do grafeno e do método de sinterização. De acordo com os resultados obtidos neste trabalho foi possível concluir que o processamento desenvolvido permitiu a criação de um compósito cerâmico zircônia-grafeno que pôde ser caracterizado por diversos métodos analíticos. A densidade teórica do compósito desenvolvido não foi alcançada por meio de nenhum dos métodos de sinterização utilizados (Tubular ou SPS) e nem variando-se a temperatura. Para espécimes sinterizados em atmosfera inerte, a maior temperatura de sinterização (1400°C) e a presença do gás H2 não melhorou a densificação. Além disso, esses espécimes tiveram aumento da dureza com o aumento da concentração de grafeno, entretanto, a sua tenacidade à fratura não foi afetada pelo teor de grafeno. Para espécimes sinterizados por meio de SPS, a temperatura de sinterização de 1350°C resultou em melhores valores de densificação. Além disso, para este tipo de sinterização, tanto a dureza como a tenacidade à fratura foram afetadas pelo teor de grafeno. / The objective of this work was to develop a zirconia-graphene ceramic composite for dental application. The study evaluated the effect of the starting powder effect, graphene concentration and sintering temperature on the mechanical properties of the composite. For this, the Y-TZP powders were synthesized from zirconium chloride and yttrium chloride solutions in the desired ratio of 3 mol% through the co-precipitation route in ammonium hydroxide solution followed by a series of washes in water, ethanol and butanol with subsequent azeotropic distillation, drying, grinding and calcination. Graphene was obtained from the chemical exfoliation of graphite by the method of Humans modified by Marcano, which resulted in a brownish gel that was subjected to washing by centrifugation, drying and deagglomeration in agate mortar, resulting finally in the graphene oxide. A second step was the chemical reduction with ascorbic acid to obtain reduced graphene oxide, a dark-colored powder that was added to the Y-TZP to obtain the composite in the various concentrations (in mol%) that were studied (0, 01%, 0.05%, 0.10%, 0.50%, 1.00% and 2.00%). The powders were characterized by thermogravimetry, X-ray diffraction and spectroscopy (FT-IR). The specimens were made in cylindrical metallic matrix and sintered in a tubular oven. Other samples were made in high density graphite matrix and sintered by Spark Plasma Sintering (SPS). All samples were characterized by means of density tests, Vickers hardness, fracture toughness and scanning electron microscopy. The highest values of relative density were observed for the sintered samples in SPS. A relative density of 98.7% was obtained for the 0.50% concentration of graphene and 98.4% for the pure Y-TZP. On the other hand, the highest value found in tubular sintering at 1400 ° C without the presence of H2 for pure Y-TZP was of the order of 96.76%. The hardness values were higher in the sintered samples in SPS, however the fracture toughness showed not to change as a function of the content of graphene. SEM images showed that there was a variation of grain size according to the presence of graphene and the sintering method. According to the results of this study it was concluded that the process developed allowed the creation of a graphene-zirconia ceramic composite which can be characterized by various analytical methods. The theoretical density of the composite developed was not achieved by any of the sintering methods used (tubular or SPS) nor by varying the temperature. For tubular sintered specimens, the higher sintering temperature (1400 ° C) and the presence of H2 gas did not improve densification. In addition, these specimens had increased hardness with increasing graphene concentration, however, their fracture toughness was not affected by graphene content. For sintered specimens by SPS, the sintering temperature of 1350 ° C resulted in better densification values. In addition, for this type of sintering, both hardness and fracture toughness were affected by the content of graphene
3

Síntese e processamento de compósito cerâmico zircônia-grafeno / Synthesis and processing of zirconia-graphene ceramic composite

Diego Santos Manarão 27 February 2018 (has links)
O objetivo desse trabalho foi desenvolver um compósito cerâmico de zircônia-grafeno para aplicação odontológica. Este estudo avaliou o efeito do pó de partida, concentração de grafeno e da temperatura de sinterização sobre as propriedades mecânicas (dureza e tenacidade à fratura) do compósito desenvolvido. Para isto foram sintetizados os pós de Y-TZP a partir de soluções de óxido-cloreto de zircônio e cloreto de ítrio na proporção desejada de 3mol% através da rota de co-precipitação em solução de hidróxido de amônio seguido por uma série de lavagens em água, etanol e butanol com posterior destilação azeotrópica, secagem, moagem e calcinação. O grafeno foi obtido a partir da exfoliação química de grafite pelo método de Hummers [40] modificado por Marcano [39], o que resultou em um gel acastanhado que foi submetido a lavagem por centrifugação, secagem e desaglomeração em almofariz de ágata, resultando, por fim, no óxido de grafeno. Uma segunda etapa foi o processo de redução química com ácido ascórbico para obtenção de óxido de grafeno reduzido, um pó de coloração escura que foi adicionado à Y-TZP para a obtenção do compósito nas diversas concentrações (em mol%) que foram estudadas: (0,01%, 0,05%, 0,10%, 0,50%, 1,00% e 2,00%). Os pós foram caracterizados por termogravimetria, difração de raios X e espectroscopia (FT-IR). Os espécimes foram confeccionados em matriz metálica cilíndrica e sinterizados em forno tubular em atmosfera inerte. Outros espécimes foram confeccionados em matriz de grafite de alta densidade e sinterizados por Spark Plasma Sintering (SPS). Todas as amostras foram caracterizadas por meio de ensaios de densidade, dureza Vickers, tenacidade à fratura e microscopia eletrônica de varredura. Os maiores valores de densidade relativa foram observados para as amostras sinterizadas em SPS, sendo que se obteve valor de densidade relativa de 98,7 % para a concentração de 0,50% de grafeno e 98,4% para a Y-TZP pura. Por outro lado, o maior valor encontrado em sinterização em atmosfera a 1400°C sem a presença de H2 para Y-TZP pura foi da ordem de 96,76%. Os valores de dureza foram maiores nas amostras sinterizadas em SPS, no entanto a tenacidade à fratura mostrou não se alterar em função do conteúdo de grafeno. As fotomicrografias de MEV mostraram que houve uma variação de tamanho de grão de acordo com a presença do grafeno e do método de sinterização. De acordo com os resultados obtidos neste trabalho foi possível concluir que o processamento desenvolvido permitiu a criação de um compósito cerâmico zircônia-grafeno que pôde ser caracterizado por diversos métodos analíticos. A densidade teórica do compósito desenvolvido não foi alcançada por meio de nenhum dos métodos de sinterização utilizados (Tubular ou SPS) e nem variando-se a temperatura. Para espécimes sinterizados em atmosfera inerte, a maior temperatura de sinterização (1400°C) e a presença do gás H2 não melhorou a densificação. Além disso, esses espécimes tiveram aumento da dureza com o aumento da concentração de grafeno, entretanto, a sua tenacidade à fratura não foi afetada pelo teor de grafeno. Para espécimes sinterizados por meio de SPS, a temperatura de sinterização de 1350°C resultou em melhores valores de densificação. Além disso, para este tipo de sinterização, tanto a dureza como a tenacidade à fratura foram afetadas pelo teor de grafeno. / The objective of this work was to develop a zirconia-graphene ceramic composite for dental application. The study evaluated the effect of the starting powder effect, graphene concentration and sintering temperature on the mechanical properties of the composite. For this, the Y-TZP powders were synthesized from zirconium chloride and yttrium chloride solutions in the desired ratio of 3 mol% through the co-precipitation route in ammonium hydroxide solution followed by a series of washes in water, ethanol and butanol with subsequent azeotropic distillation, drying, grinding and calcination. Graphene was obtained from the chemical exfoliation of graphite by the method of Humans modified by Marcano, which resulted in a brownish gel that was subjected to washing by centrifugation, drying and deagglomeration in agate mortar, resulting finally in the graphene oxide. A second step was the chemical reduction with ascorbic acid to obtain reduced graphene oxide, a dark-colored powder that was added to the Y-TZP to obtain the composite in the various concentrations (in mol%) that were studied (0, 01%, 0.05%, 0.10%, 0.50%, 1.00% and 2.00%). The powders were characterized by thermogravimetry, X-ray diffraction and spectroscopy (FT-IR). The specimens were made in cylindrical metallic matrix and sintered in a tubular oven. Other samples were made in high density graphite matrix and sintered by Spark Plasma Sintering (SPS). All samples were characterized by means of density tests, Vickers hardness, fracture toughness and scanning electron microscopy. The highest values of relative density were observed for the sintered samples in SPS. A relative density of 98.7% was obtained for the 0.50% concentration of graphene and 98.4% for the pure Y-TZP. On the other hand, the highest value found in tubular sintering at 1400 ° C without the presence of H2 for pure Y-TZP was of the order of 96.76%. The hardness values were higher in the sintered samples in SPS, however the fracture toughness showed not to change as a function of the content of graphene. SEM images showed that there was a variation of grain size according to the presence of graphene and the sintering method. According to the results of this study it was concluded that the process developed allowed the creation of a graphene-zirconia ceramic composite which can be characterized by various analytical methods. The theoretical density of the composite developed was not achieved by any of the sintering methods used (tubular or SPS) nor by varying the temperature. For tubular sintered specimens, the higher sintering temperature (1400 ° C) and the presence of H2 gas did not improve densification. In addition, these specimens had increased hardness with increasing graphene concentration, however, their fracture toughness was not affected by graphene content. For sintered specimens by SPS, the sintering temperature of 1350 ° C resulted in better densification values. In addition, for this type of sintering, both hardness and fracture toughness were affected by the content of graphene

Page generated in 0.0479 seconds