• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

High Frequency Magnetic Core Loss Study

Mu, Mingkai 22 March 2013 (has links)
The core used to build power inductors and transformers are soft magnetic materials. When there is alternating external field, the magnetic moments rotate and consume energy, which is the core loss. The core loss depends on the AC flux frequency, amplitude, waveform, DC bias and temperature. These dependences are nonlinear and difficult to predict. How to measure, model and analyze the core loss is a challenge for decades. In this dissertation, two new core loss measurement methods are introduced first. These two methods use the reactive cancellation concept to reduce the sensitivity to phase discrepancy, which will destroy the accuracy in classic two-winding method for high frequency high quality factor sample measurements. By using the new measurement techniques the accuracy can be improved by several orders. The first is for sinusoidal waveforms, and the second is for non-sinusoidal wave. The new methods enable high frequency core loss characterization capability, which will help scientists and engineers on material research and inductor/transformer design. Measurement examples, considerations and error analysis are demonstrated and discussed in detail. With the measurement techniques, the core loss under rectangular AC voltage and DC bias current are investigated. A new core loss model named rectangular extension Steinmetz equation (RESE) is proposed based on the measurement results. The new model is shown to be more accurate than the existing core loss models. Several commercially available MnZn ferrites are characterized and modeled. Other than conventional MnZn ferrite materials, three commercial LTCC ferrite materials are characterized for integrated power supply applications. Based on characterized properties of these LTCCs, a group of new LTCC ferrites are fabricated and tested. The new LTCC is fabricated by laminating commercial LTCC tapes and co-firing. The new LTCC is demonstrated to have over 50% more inductance over the commercial LTCC materials. This work indicates that the power electronics engineers should work with material engineers to get the optimum material for a given application. In the last part, the core loss of the partially saturated lateral flux planar inductor is analyzed. The challenge of the analysis is the complexity of the distribution of bias field and flux density in a highly biased planar inductor. Each point in the core is working at different excitation and bias condition, and the core loss density is very non-uniform. The proposed method combines the characterization tested in previous chapters and the commercial finite element tool. Experiments verified that the calculation errors are within about 10%. In conclusion, the research in this dissertation proposed a complete solution to measure, model and analyze the high frequency core loss. This solution will not only facilitate fundamental research on physics understanding and material innovation, but also development of power electronics and RF applications. / Ph. D.
2

Model calibration methods for mechanical systems with local nonlinearities

Chen, Yousheng January 2016 (has links)
Most modern product development utilizes computational models. With increasing demands on reducing the product development lead-time, it becomes more important to improve the accuracy and efficiency of simulations. In addition, to improve product performance, a lot of products are designed to be lighter and more flexible, thus more prone to nonlinear behaviour. Linear finite element (FE) models, which still form the basis of numerical models used to represent mechanical structures, may not be able to predict structural behaviour with necessary accuracy when nonlinear effects are significant. Nonlinearities are often localized to joints or boundary conditions. Including nonlinear behaviour in FE-models introduces more sources of uncertainty and it is often necessary to calibrate the models with the use of experimental data. This research work presents a model calibration method that is suitable for mechanical systems with structural nonlinearities. The methodology concerns pre-test planning, parameterization, simulation methods, vibrational testing and optimization. The selection of parameters for the calibration requires physical insights together with analyses of the structure; the latter can be achieved by use of simulations. Traditional simulation methods may be computationally expensive when dealing with nonlinear systems; therefore an efficient fixed-step state-space based simulation method was developed. To gain knowledge of the accuracy of different simulation methods, the bias errors for the proposed method as well as other widespread simulation methods were studied and compared. The proposed method performs well in comparison to other simulation methods. To obtain precise estimates of the parameters, the test data should be informative of the parameters chosen and the parameters should be identifiable. Test data informativeness and parameter identifiability are coupled and they can be assessed by the Fisher information matrix (FIM). To optimize the informativeness of test data, a FIM based pre-test planning method was developed and a multi-sinusoidal excitation was designed. The steady-state responses at the side harmonics were shown to contain valuable information for model calibration of FE-models representing mechanical systems with structural nonlinearities. In this work, model calibration was made by minimizing the difference between predicted and measured multi-harmonic frequency response functions using an efficient optimization routine. The steady-state responses were calculated using the extended multi-harmonic balance method. When the parameters were calibrated, a k-fold cross validation was used to obtain parameter uncertainty. The proposed model calibration method was validated using two test-rigs, one with a geometrical nonlinearity and one with a clearance type of nonlinearity. To attain high quality data efficiently, the amplitude of the forcing harmonics was controlled at each frequency step by an off-line force feedback algorithm. The applied force was then measured and used in the numerical simulations of the responses. It was shown in the validation results that the predictions from the calibrated models agree well with the experimental results. In summary, the presented methodology concerns both theoretical and experimental aspects as it includes methods for pre-test planning, simulations, testing, calibration and validation. As such, this research work offers a complete framework and contributes to more effective and efficient analyses on mechanical systems with structural nonlinearities.
3

Control Systems for Experimental Magnetic Materials Characterization Using Dynamic Preisach Models / Reglering av mätsystem för magnetisk material egenskaper med dynamiska Preisach modellen

MEHRPARVAR, MAHSHID January 2014 (has links)
The eciency of electrical machines is of major concern due to their widespread usage and the globally increasing awareness of energy consumption issues. Iron losses have a signicant impact on the total and thus researchers and manufacturers of electrical machines are developing dierent strategies in order to reduce them. The iron losses are highly dependent on the magnetic material that is used and thus it is necessary to identify its relevant characteristics. In this work, the development of a control system for inducing a pure sinusoidal magnetic ux density in the magnetic material is described. This is necessary in order to perform characterisation of the magnetic material. The main diculty is the highly non-linear and hysteretic relationship between the magnetic eld strength and the magnetic ux density. In order to mitigate the eect of the hysteresis, a mathematical inverse model was used in the control system. To nd a suitable model, an extensive study of literature was performed and discussed in this work. The Preisach model and its dynamic extension was chosen as the most suitable approach. A detailed description of both theory and implementation details is provided in this work. Furthermore, the model is validated by comparing simulation against measurement data for two dierent materials. In the last part of this work, the inverse model is combined with a controller to form a feedback control system. Two dierent control schemes are investigated: a simpler PI controller and a more elaborate disturbance observer (DOB) based control scheme. The DOB is used to observe the hysteresis inversion error and the observation is used to correct for the error. The controller's ability to produce a pure sinusoidal magnetic ux density was assessed by simulations with dierent magnetic materials at varying frequencies. / Verkningsgraden for elmotorer ar av okande intresse pa grund av deras omfattande anvandning och vaxande oro for globala energiforbrukningsfragor. Jarnforluster har ett stort inytande i de totala forlusterna och ar darfor ett viktigt omrade for forskare och tillverkare av elektriska motorer. Jarnforlusterna beror till stor del av det magnetiska materialet som anvands i konstruktion av elmotorer och det ar darfor nodvandigt att identiera materialets egenskaper. I det har arbetet beskrivs utvecklingen av ett reglersystem for att inducera en ren sinusformat magnetisk odestathet i ett magnetiskt material. Detta ar nodvandigt for att kunna bestamma det magnetiska materialets egenskaper under kontrollerade forhallanden. Huvudsvarigheten ar det icke-linjara sambandet mellan magnetiska faltstyrkan och odest atheten. Sambandet formar en hysteres och for att eliminera dess inytande anvandes en matematisk invers model. For att hitta en lamplig model genomfordes en literaturstudie och Preisach modellen och dess dynamiska utokning valdes. I detta arbete nns en detaljerad beskrivning av bade teorin bakom modellen och dess implementering. Modellen utvarderades genom att jamfora matvarden med simulationsresultat for olika magnetiska material. I sista delen av detta arbete kombineras inversmodellen med ett reglerssystem for att kunna uppna en sinusformat odestathet i det magnetiska materialet. Tva olika regleralgoritmer utvarderas, en enklare PI-regulator och en regulator som inkluderar en sa kallat "Disturbance Observer" (DOB). DOB:n anvandes for att observera felet som uppstar vid invertering av hysteresen och for att korrigera felet. De bada regulatorernas formaga attaterskapa en ren sinusformat magnetisk odestathet testas genom att genomfora simulationer for olika magnetiska material vid varierande frekvenser.

Page generated in 0.1364 seconds