• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 2
  • Tagged with
  • 13
  • 13
  • 13
  • 12
  • 10
  • 9
  • 7
  • 6
  • 6
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Detecção e classificação de VTCDs em sistemas de distribuição de energia elétrica usando redes neurais artificiais. / Detection and classification of short duration voltage variations in power distribution systems using artificial neural networks.

Richard Henrique Ribeiro Antunes 28 March 2012 (has links)
Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro / O objetivo deste trabalho é conhecer e compreender melhor os imprevistos no fornecimento de energia elétrica, quando ocorrem as variações de tensão de curta duração (VTCD). O banco de dados necessário para os diagnósticos das faltas foi obtido através de simulações de um modelo de alimentador radial através do software PSCAD/EMTDC. Este trabalho utiliza um Phase-Locked Loop (PLL) com o intuito de detectar VTCDs e realizar a estimativa automática da frequência, do ângulo de fase e da amplitude das tensões e correntes da rede elétrica. Nesta pesquisa, desenvolveram-se duas redes neurais artificiais: uma para identificar e outra para localizar as VTCDs ocorridas no sistema de distribuição de energia elétrica. A técnica aqui proposta aplica-se a alimentadores trifásicos com cargas desequilibradas, que podem possuir ramais laterais trifásicos, bifásicos e monofásicos. No desenvolvimento da mesma, considera-se que há disponibilidade de medições de tensões e correntes no nó inicial do alimentador e também em alguns pontos esparsos ao longo do alimentador de distribuição. Os desempenhos das arquiteturas das redes neurais foram satisfatórios e demonstram a viabilidade das RNAs na obtenção das generalizações que habilitam o sistema para realizar a classificação de curtos-circuitos. / The objective of this work is to know and understand the unforeseen in the supply of electricity, when there are short duration voltage variations (SDVV). The required databases for the diagnosis of faults were obtained through simulations of a model of radial feeder through software PSCAD/EMTDC. This work uses a Phase-Locked Loop (PLL) in order to detect and perform the estimation SDVV automatic frequency, phase angle and amplitude of the voltage and current from the power grid. This research is developing two artificial neural networks: one to identify and another to locate the SDVV occurred in the distribution system of electricity. The technique proposed here applies to three-phase feeders with unbalanced loads, which can have side extensions triphasic, biphasic and monophasic. In developing the same, it is considered that there is availability of measurements of voltages and currents at the node of the initial feeder and also in some points scattered along the distribution feeder. The performances of the architectures of neural networks were satisfactory and demonstrate the feasibility of ANNs in obtaining the generalizations that enables the system for the classification of short circuits.
12

Estimação espaço-temporal das perdas não técnicas no sistema de distribuição de energia elétrica / Spatial-temporal estimation for non-technical losses in electricity distribution systems

Faria, Lucas Teles de [UNESP] 26 February 2016 (has links)
Submitted by LUCAS TELES DE FARIA null (lucas.teles.faria@gmail.com) on 2016-04-06T05:42:40Z No. of bitstreams: 1 TESE_DOUTORADO_ENG.ELETRICA_LUCAS-TELES-DE-FARIA.pdf: 4869615 bytes, checksum: 5cea8811bb7d053c5440e3d6fb5d55cd (MD5) / Approved for entry into archive by Juliano Benedito Ferreira (julianoferreira@reitoria.unesp.br) on 2016-04-07T19:51:32Z (GMT) No. of bitstreams: 1 faria_lt_dr_ilha.pdf: 4869615 bytes, checksum: 5cea8811bb7d053c5440e3d6fb5d55cd (MD5) / Made available in DSpace on 2016-04-07T19:51:32Z (GMT). No. of bitstreams: 1 faria_lt_dr_ilha.pdf: 4869615 bytes, checksum: 5cea8811bb7d053c5440e3d6fb5d55cd (MD5) Previous issue date: 2016-02-26 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Neste trabalho o espaço geográfico é incorporado ao estudo das perdas não técnicas. Os trabalhos avaliados em perdas comumente não consideram a localização espacial das mesmas de forma explícita. No entanto, o estudo das características do lugar onde elas ocorrem pode trazer informações imprescindíveis para melhor compreensão do problema. O espaço é incorporado via técnicas de análise espacial de dados geográficos. A saber: análise espacial de padrões de pontos e análise espacial de dados agregados por áreas. A localização das perdas é obtida através de dados de inspeções reais georreferenciados obtidos a partir de uma concessionária de energia elétrica. Os atributos socioeconômicos do censo demográfico e da rede de distribuição de energia do lugar onde ocorrem as perdas são considerados via técnicas de regressões espaciais. São elas: modelo aditivo generalizado (GAM) e regressão geograficamente ponderada (GWR). Esses atributos são as variáveis independentes das regressões espaciais e auxiliam na explicação da disposição das perdas no espaço geográfico do município em estudo. Essas regressões são combinadas com as cadeias de Markov para produção de mapas de probabilidades de perdas. Esses mapas indicam as subáreas do município que são mais vulneráveis às perdas em termos probabilísticos. Por meio deles, estima-se a evolução das perdas não técnicas no espaço geográfico do município ao longo do tempo. Os mapas de probabilidade de perdas são uma ferramenta gráfica, de fácil interpretação e que auxiliam no planejamento de uma série de ações de prevenção e combate às perdas. Este estudo foi realizado em um município de porte médio do interior paulista com aproximadamente 81 mil unidades consumidoras, sendo que os resultados das simulações foram comparados com dados reais de inspeções em campo. A taxa de acerto para estimação das áreas vulneráveis às perdas via modelo aditivo generalizado (GAM) e cadeias e Markov foi superior a 80%. / In this work the geographic space is incorporated into the study of non-technical losses. Studies on non-technical losses do not often consider the spatial location of them explicitly. However, the study of the characteristics of the place where they occur can provide essential information to better understanding of the problem. The space is incorporated via spatial analysis techniques of geographical data; to know: spatial analysis of point patterns and spatial analysis of data aggregated by areas. The location of the losses is determined via georeferenced inspections data obtained from an electrical power utility. Socioeconomic attributes of the census and the distribution network of energy of the place where the losses occur are considered using the spatial regressions techniques; namely: generalized additive model (GAM) and geographically weighted regression (GWR). These attributes are the independent variables of spatial regressions and assist in the provision of the explanation of the losses in the geographical space of the city under study. These regressions are combined with Markov chains to produce the loss probability maps. These maps show the city subareas that are more vulnerable to losses in probabilistic terms. Through them, the evolution of non-technical losses in the geographical area of the city over the time is estimated. The loss probability maps are a graphical tool, easy to interpret and to assist in planning a series of actions to prevent and combat to losses. This study was conducted in a medium-sized city of São Paulo with about 81,000 consumer units, and the simulation results were compared with real data obtained in field inspections. The hit rate for the estimation of areas vulnerable to losses via generalized additive model (GAM) and Markov chains surpasses 80%.
13

Localização de faltas de curta duração em redes de distribuição. / Location of the short duration fault in a power distribution system.

Tiago Fernandes Moraes 30 April 2014 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / O objetivo deste trabalho é contribuir com o desenvolvimento de uma técnica baseada em sistemas inteligentes que possibilite a localização exata ou aproximada do ponto de origem de uma Variação de Tensão de Curta Duração (VTCD) (gerada por uma falta) em um sistema de distribuição de energia elétrica. Este trabalho utiliza um Phase-Locked Loop (PLL) com o intuito de detectar as faltas. Uma vez que a falta é detectada, os sinais de tensão obtidos durante a falta são decompostos em componentes simétricas instantâneas por meio do método proposto. Em seguida, as energias das componentes simétricas são calculadas e utilizadas para estimar a localização da falta. Nesta pesquisa, são avaliadas duas estruturas baseadas em Redes Neurais Artificiais (RNAs). A primeira é projetada para classificar a localização da falta em um dos pontos possíveis e a segunda é projetada para estimar a distância da falta ao alimentador. A técnica aqui proposta aplica-se a alimentadores trifásicos com cargas equilibradas. No desenvolvimento da mesma, considera-se que há disponibilidade de medições de tensões no nó inicial do alimentador e também em pontos esparsos ao longo da rede de distribuição. O banco de dados empregado foi obtido através de simulações de um modelo de alimentador radial usando o programa PSCAD/EMTDC. Testes de sensibilidade empregando validação-cruzada são realizados em ambas as arquiteturas de redes neurais com o intuito de verificar a confiabilidade dos resultados obtidos. Adicionalmente foram realizados testes com faltas não inicialmente contidas no banco de dados a fim de se verificar a capacidade de generalização das redes. Os desempenhos de ambas as arquiteturas de redes neurais foram satisfatórios e demonstram a viabilidade das técnicas propostas para realizar a localização de faltas em redes de distribuição. / The aim of this work is to contribute to the development of a technique based on intelligent systems that allows the accurate location of the Short Duration Voltage Variations (SDVV) origin in an electrical power distribution system. Once the fault is detected via a Phase-Locked Loop (PLL), voltage signals acquired during the fault are decomposed into instantaneous symmetrical components by the proposed method. Then, the energies of the symmetrical components are calculated and used to estimate the fault location. In this work, two systems based on Artificial Neural Networks (ANN) are evaluated. The first one is designed to classify the fault location into one of predefined possible points and the second is designed to estimate the fault distance from the feeder. The technique herein proposed is applies to three-phase feeders with balanced loads. In addition, it is considered that there is availability of voltage measurements in the initial node of the feeder and also in sparse points along the distribution power grid. The employed database was made using simulations of a model of radial feeder using the PSCAD / EMTDC program. Sensitivity tests employing cross-validation are performed for both approaches in order to verify the reliability of the results. Furthermore, in order to check the generalization capability, tests with faults not originally contained in the database were performed. The performances of both architectures of neural networks were satisfactory and they demonstrate the feasibility of the proposed techniques to perform fault location on distribution grids.

Page generated in 0.6913 seconds