• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 1
  • Tagged with
  • 14
  • 14
  • 14
  • 9
  • 6
  • 5
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

PROGNOSE DO DIÂMETRO E DA ALTURA DE ÁRVORES INDIVIDUAIS UTILIZANDO INTELIGÊNCIA ARTIFICIAL

VIEIRA, G. C. 23 February 2015 (has links)
Made available in DSpace on 2016-08-29T15:37:11Z (GMT). No. of bitstreams: 1 tese_8553_Dissertacao Giovanni Correia.pdf: 1949241 bytes, checksum: ddd93004c970a35dee4940ff6ad8ebcf (MD5) Previous issue date: 2015-02-23 / VIEIRA, Giovanni Correia,Prognose do diâmetro e da altura de árvores individuais utilizando inteligência artificial. 2015. Dissertação (Mestrado em Ciências Florestais) Universidade Federal do Espírito Santo, Jerônimo Monteiro. Orientador: Prof. Dr. Adriano Ribeiro de Mendonça. Coorientadores: Prof. Dr. Gilson Fernandes da Silva; Prof. Dr. Sidney Sára Zanetti. Os modelos de árvores individuais são compostos por submodelos que estimam, geralmente,a competição, a mortalidade e o crescimento em diâmetro e altura de cada árvore. São usualmente adotados quando se deseja o melhor detalhamento da informação para estimar multiprodutos da floresta. Nesses modelos, as estimativas do crescimento em diâmetro a 1,30m do solo (DAP) e a altura total (H)éobtida por meio de análise de regressão. Recentemente, técnicas de inteligência artificialestão sendo utilizadas com bom desempenhona mensuração florestal. Portanto, o objetivo desse trabalho foi avaliar o desempenho de técnicas de inteligência artificial(redes neurais artificiais e sistemas neuro-fuzzy)para estimar o crescimento em DAP e altura de árvores de eucalipto.Utilizou-se dados de inventários florestais contínuos de eucalipto, com medições anuais deDAP, altura total das 15 primeiras árvores da parcela e altura dominante, de acordo com o conceito de Assmann (1970), de 398 parcelas. O banco de dados foi dividido em 70% das parcelas para o treinamento das redes neurais artificiais e do sistema neuro-fuzzy; 15% das parcelas para a validação cruzada; e 15% das parcelas para validação dos sistemas. Com base nos resultados,notou-se que o índice de competição independente da distância 5 IID5, proposto por Glover; Hool (1979), foi o que teve a maior correlação com as variáveis idade, crescimento em DAP e altura. Observou-se queas técnicas de inteligência artificialapresentaram boa precisão na estimativa do crescimento em DAP e altura total.As duas técnicas abordadas podem ser utilizadas para a prognose do DAP e altura total. Palavras-chave: Redes neurais artificiais, Sistemas neuro-fuzzy, Mensuração florestal.
2

[en] STRATEGIC GROUPS: ARESOURCE-BASED VIEW AND NEURO-FUZZY SYSTEMS APPROACH / [pt] IDENTIFICAÇÃO DE GRUPOS ESTRATÉGICOS: UMA ABORDAGEM UTILIZANDO A VISÃO RESOURCE-BASED E SISTEMAS NEURO-FUZZY

CARLOS ALEXANDRE DOS SANTOS OLIVEIRA 03 January 2005 (has links)
[pt] Desde sua formulação, no início da década de setenta, o conceito de grupo estratégico é objeto de pesquisas teóricas e empíricas que buscam confirmar sua existência, sua contribuição à avaliação da performance e à formação das estratégias das empresas. Este trabalho soma-se a estas pesquisas, utilizando os conceitos da Visão Resource- Based e a aplicação de ferramentas de inteligência computacional, neste caso as redes neurais e os sistemas de inferência fuzzy, com o objetivo de contribuir para a discussão deste tema na superação de suas limitações e dos novos desafios que o aumento da complexidade das arenas competitivas trouxeram para as pesquisas do gerenciamento estratégico. A Visão Resource-Based fornece a base teórica para o desenvolvimento dos construtos: grau de inimitabilidade e grau de imobilidade, resultantes da exploração estratégica dos recursos da empresa. Estes construtos são propostos como dimensões de avaliação da semelhança estratégica entre as empresas de uma arena competitiva. A inteligência computacional fornece os meios de extração de informações subjetivas, e presentes em ambientes complexos, através da simulação do aprendizado, percepção, evolução e adaptação do raciocínio humano. O resultado é a proposição de um modelo de avaliação da existência de grupos estratégicos, utilizando os construtos Grau de Inimitabilidade e Grau de Imobilidade, e Sistemas Neuro-fuzzy. Este modelo é aplicado ao setor de supermercados como teste de validação do mesmo. / [en] Since its has introduced, in the beginning of the decade of seventy, the concept of strategic groups is object of theoretical and empirical research that aims to confirm its existence, its contribution to performance evaluation and the formulation of the strategies of the firms. This text join these research, using the Resource-Based Views framework and soft computing, in this case neural networks and fuzzy inference systems, with aims at contributing for the discussion of this subject to overcome its limitations and the new challenges, resulting increasingly complexity and competitive environment, for the strategic management research. The Resource-Based View framework supplies the theoretical underpinnings to use the inimitability degree and immobility degree, resultants of the strategical exploration of the resources of the firms, as constructors to evaluate firm strategic similarity in a competitive environment. Soft computing is a tool to extract subjective data from complexity environments, simulating the ability for learning, perception, evolution and adaptation of human reasoning. The result of this research is the proposal of a model to identify strategic groups, applying the constructors Inimitability Degree and Immobility Degree, and Neuro-fuzzy Inference Systems. To validate the model, a test is performed to the supermarkets industry.
3

Avaliação de modelos de inteligência artificial para previsão da velocidade de vento em curto prazo

SOUZA, Ramon Bezerra de 29 August 2014 (has links)
Submitted by Isaac Francisco de Souza Dias (isaac.souzadias@ufpe.br) on 2016-01-25T18:22:30Z No. of bitstreams: 2 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) Dissertação_Ramon_Bezerra_Souza_versão_final.pdf: 3177211 bytes, checksum: 017ba69bf52dcd924ae27162d811437a (MD5) / Made available in DSpace on 2016-01-25T18:22:30Z (GMT). No. of bitstreams: 2 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) Dissertação_Ramon_Bezerra_Souza_versão_final.pdf: 3177211 bytes, checksum: 017ba69bf52dcd924ae27162d811437a (MD5) Previous issue date: 2014-08-29 / CAPES / O Brasil apresenta um amplo potencial eólico a ser explorado, atualmente, observa-se a grande expansão desta fonte de geração, principalmente no nordeste do Brasil, onde os ventos apresentam uma importante característica de complementaridade em relação às vazões do rio São Francisco. Porém, devido à incerteza associada à potência disponível, o aprimoramento das ferramentas de previsão de curto prazo representa um fator determinante para a operação do sistema, contribuindo para facilitar a comercialização de energia elétrica, o controle dos parques eólicos e fornecer uma estimativa futura para determinada localidade. Este trabalho é uma contribuição aos modelos de previsão de velocidades médias horárias dos ventos, para o horizonte de previsão de uma a quatro horas, utilizando as Redes Neurais Artificiais, sistemas Neuro-Fuzzy e o Reservoir Computing como métodos de inteligência artificial e as variáveis velocidade média do vento, umidade do ar, radiação solar e temperatura como entradas dos modelos de previsão. Os resultados obtidos para as previsões com alguns modelos propostos, revelaram ganhos da ordem de 50 % quando comparados com o modelo de referência, ratificando a eficiência dos modelos desenvolvidos. / Brazil has a large wind potential to be exploited, currently, there is a great expansion of this source of generation, primarily in northeastern Brazil, where winds have an important feature of complementarity with the flows San Francisco River. However, due to the uncertainty associated with the available power, the improvement in short-term forecasting tools is a key factor for system operation, helping to facilitate the sale of electricity, control of wind farms and provide an estimate for future Local determined. This work is a contribution to the average speeds hourly forecast models of the winds, to the forecasting horizon of one to four hours, using the Artificial Neural Networks, Neuro-Fuzzy systems and Reservoir Computing as methods of artificial intelligence and speed variables average wind, humidity, solar radiation and temperature as inputs for forecasting models. The results obtained for predictions with some proposed models, showed gains of about 50% compared to the reference model, confirming the efficiency of the developed models.
4

Abordagem neurofuzzy para previsão de demanda de energia elétrica no curtíssimo prazo / Neurofuzzy approach for very-short term load demand forecasting

Andrade, Luciano Carli Moreira de 03 August 2010 (has links)
Uma vez que sistemas de inferência neuro-fuzzy adaptativos são aproximadores universais que podem ser usados em aplicações de aproximação de funções e de previsão, este trabalho tem por objetivo determinar seus melhores parâmetros e suas melhores arquiteturas com o propósito de se executar previsão de demanda de energia elétrica no curtíssimo prazo em subestações de distribuição. Isto pode possibilitar o desenvolvimento de controles automáticos de carga mais eficientes para sistemas elétricos de potência. As entradas do sistema são séries temporais de demanda de energia elétrica, compostas por dados mensurados em intervalos de cinco minutos ao longo de sete dias em subestações localizadas em cidades do interior do estado de São Paulo. Diversas configurações de entrada e diferentes arquiteturas foram examinadas para se fazer a previsão de um passo a frente. Os resultados do sistema de inferência neuro-fuzzy adaptativo frente às abordagens encontradas na literatura foram promissores. / Since adaptive neuro-fuzzy inference systems are universal approximators that can be used in functions approximation and forecasting applications, this work has the objective to determine their best parameters and best architectures with the purpose to execute very short term load forecasting in distribution substations. This can allow the development of more efficient load automatic control for power systems. The system inputs are load demand time series, which are composed of data measured at each five minutes interval, during seven days, from substations located in cities from São Paulo state countryside. Several input configurations and different architectures were examined to make a prediction aiming one step forecasting. The adaptive neuro-fuzzy inference system results in comparison with other approaches found in literature were promising.
5

[en] INTELLIGENT SYSTEMS APPLIED TO FRAUD ANALYSIS IN THE ELECTRICAL POWER INDUSTRIES / [pt] SISTEMAS INTELIGENTES NO ESTUDO DE PERDAS COMERCIAIS DO SETOR DE ENERGIA ELÉTRICA

JOSE EDUARDO NUNES DA ROCHA 25 March 2004 (has links)
[pt] Esta dissertação investiga uma nova metodologia, baseada em técnicas inteligentes, para a redução das perdas comerciais relativas ao fornecimento de energia elétrica. O objetivo deste trabalho é apresentar um modelo de inteligência computacional capaz de identificar irregularidades na medição de demanda e consumo de energia elétrica, considerando as características sazonais não lineares das curvas de carga das unidades consumidoras, características essas que são difíceis de se representar em modelos matemáticos. A metodologia é baseada em três etapas: categorização, para agrupar unidades consumidoras em classes similares; classificação para descobrir relacionamentos que expliquem o perfil da irregularidade no fornecimento de energia elétrica e que permitam prever a classe de um padrão desconhecido; e extração de conhecimento sob a forma de regras fuzzy interpretáveis. O modelo resultante foi denominado Sistema de Classificação de Unidades Consumidoras de Energia Elétrica. O trabalho consistiu em três partes: um estudo sobre os principais métodos de categorização e classificação de padrões; definição e implementação do Sistema de Classificação de Unidades Consumidoras de Energia Elétrica; e o estudo de casos. No estudo sobre os métodos de categorização foi feito um levantamento bibliográfico da área, resultando em um resumo das principais técnicas utilizadas para esta tarefa, as quais podem ser divididas em algoritmos de categorização hierárquicos e não hierárquicos. No estudo sobre os métodos de classificação foram feitos levantamentos bibliográficos dos sistemas Neuro-Fuzzy que resultaram em um resumo sobre as arquiteturas, algoritmos de aprendizado e extração de regras fuzzy de cada modelo analisado. Os modelos Neuro-Fuzzy foram escolhidos devido a sua capacidade de geração de regras lingüísticas. O Sistema de Classificação de Unidades Consumidoras de Energia Elétrica foi definido e implementado da seguinte forma: módulo de categorização, baseado no algoritmo Fuzzy C-Means (FCM); e módulo de classificação baseado nos Sistemas Neuro-Fuzzy NEFCLASS e NFHB-Invertido. No primeiro módulo, foram utilizadas algumas medidas de desempenho como o FPI (Fuzziness Performance Index), que estima o grau de nebulosidade (fuziness) gerado por um número específico de clusters, e a MPE (Modified Partition Entropy), que estima o grau de desordem gerado por um número específico de clusters. Para validação do número ótimo de clusters, aplicou-se o critério de dominância segundo o método de Pareto. No módulo de classificação de unidades consumidoras levou-se em consideração a peculiaridade de cada sistema neuro-fuzzy, além da análise de desempenho comparativa (benchmarking) entre os modelos. Além do objetivo de classificação de padrões, os Sistemas Neuro-Fuzzy são capazes de extrair conhecimento em forma de regras fuzzy interpretáveis expressas como: SE x é A e y é B então padrão pertence à classe Z. Realizou-se um amplo estudo de casos, abrangendo unidades consumidoras de atividades comerciais e industriais supridas em baixa e média tensão. Os resultados encontrados na etapa de categorização foram satisfatórios, uma vez que as unidades consumidoras foram agrupadas de forma natural pelas suas características de demanda máxima e consumo de energia elétrica. Conforme o objetivo proposto, esta categorização gerou um número reduzido de agrupamentos (clusters) no espaço de busca, permitindo que o treinamento dos sistemas Neuro-Fuzzy fosse direcionado para o menor número possível de grupos, mas com elevada representatividade sobre os dados. Os resultados encontrados com os modelos NFHB-Invertido e NEFCLASS mostraram-se, na maioria dos casos, superiores aos melhores resultados encontrados pelos modelos matemáticos comumente utilizados. O desempenho dos modelos NFHB-Invertido e NEFCLASS, em relação ao te / [en] This dissertation investigates a new methodology based on intelligent techniques for commercial losses reduction in electrical energy supply. The objective of this work is to present a model of computational intelligence able to identify irregularities in consumption and demand electrical measurements, regarding the non-linearity of the consumers seasonal load curve which is hard to represent by mathematical models. The methodology is based on three stages: clustering, to group consumers of electric energy into similar classes; patterns classification, to discover relationships that explain the irregularities profile and that determine the class for an unknown pattern; and knowledge extraction in form of interpretable fuzzy rules. The resulting model was entitled Electric Energy Consumers Classification System. The work consisted of three parts: a bibliographic research about main methods for clustering and patterns classification; definition and implementation of the Electric Energy Consumers Classification System; and case studies. The bibliographic research of clustering methods resulted in a survey of the main techniques used for this task, which can be divided into hierarchical and non-hierarchical clustering algorithms. The bibliographic research of classification methods provided a survey of the architectures, learning algorithms and rules extraction of the neuro-fuzzy systems. Neuro-fuzzy models were chosen due to their capacity of generating linguistics rules. The Electric Energy Consumers Classification System was defined and implemented in the following way: a clustering module, based on the Fuzzy CMeans (FCM) algorithm; and classification module, based on NEFCLASS and Inverted-NFHB neuro-fuzzy sytems. In the first module, some performance metrics have been used such as the FPI (Fuzziness Performance Index), which estimates the fuzzy level generated by a specific number of clusters; and the MPE (Modified Partition Entropy) that estimates disorder level generated by a specific number of clusters. The dominance criterion of Pareto method was used to validate optimal number of clusters. In the classification module, the peculiarities of each neuro-fuzzy system as well as performance comparison of each model were taken into account. Besides the patterns classification objective, the neuro-Fuzzy systems were able to extract knowledge in form of interpretable fuzzy rules. These rules are expressed by: IF x is A and y is B then the pattern belongs to Z class. The cases studies have considered industrial and commercial consumers of electric energy in low and medium tension. The results obtained in the clustering step were satisfactory, since consumers have been clustered in a natural way by their electrical consumption and demand characteristics. As the proposed objective, the system has generated an optimal low number of clusters in the search space, thus directing the learning step of the neuro-fuzzy systems to a low number of groups with high representation over data. The results obtained with Inverted-NFHB and NEFCLASS models, in the majority of cases, showed to be superior to the best results found by the mathematical methods commonly used. The performance of the Inverted-NFHB and NEFCLASS models concerning to processing time was also very good. The models converged to an optimal classification solution in a processing time inferior to a minute. The main objective of this work, that is the non- technical power losses reduction, was achieved by the assertiveness increases in the identification of the cases with measuring irregularities. This fact made possible some reduction in wasting with workers and effectively improved the billing.
6

Abordagem neurofuzzy para previsão de demanda de energia elétrica no curtíssimo prazo / Neurofuzzy approach for very-short term load demand forecasting

Luciano Carli Moreira de Andrade 03 August 2010 (has links)
Uma vez que sistemas de inferência neuro-fuzzy adaptativos são aproximadores universais que podem ser usados em aplicações de aproximação de funções e de previsão, este trabalho tem por objetivo determinar seus melhores parâmetros e suas melhores arquiteturas com o propósito de se executar previsão de demanda de energia elétrica no curtíssimo prazo em subestações de distribuição. Isto pode possibilitar o desenvolvimento de controles automáticos de carga mais eficientes para sistemas elétricos de potência. As entradas do sistema são séries temporais de demanda de energia elétrica, compostas por dados mensurados em intervalos de cinco minutos ao longo de sete dias em subestações localizadas em cidades do interior do estado de São Paulo. Diversas configurações de entrada e diferentes arquiteturas foram examinadas para se fazer a previsão de um passo a frente. Os resultados do sistema de inferência neuro-fuzzy adaptativo frente às abordagens encontradas na literatura foram promissores. / Since adaptive neuro-fuzzy inference systems are universal approximators that can be used in functions approximation and forecasting applications, this work has the objective to determine their best parameters and best architectures with the purpose to execute very short term load forecasting in distribution substations. This can allow the development of more efficient load automatic control for power systems. The system inputs are load demand time series, which are composed of data measured at each five minutes interval, during seven days, from substations located in cities from São Paulo state countryside. Several input configurations and different architectures were examined to make a prediction aiming one step forecasting. The adaptive neuro-fuzzy inference system results in comparison with other approaches found in literature were promising.
7

Prognose do diâmetro e da altura de árvores individuais utilizando inteligência artificial

Vieira, Giovanni Correia 23 February 2015 (has links)
Submitted by Maykon Nascimento (maykon.albani@hotmail.com) on 2016-06-27T19:26:14Z No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Dissertacao Giovanni Correia.pdf: 2352633 bytes, checksum: af81ecb43db7a1390cce952e53aaff53 (MD5) / Approved for entry into archive by Patricia Barros (patricia.barros@ufes.br) on 2016-06-28T12:18:13Z (GMT) No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Dissertacao Giovanni Correia.pdf: 2352633 bytes, checksum: af81ecb43db7a1390cce952e53aaff53 (MD5) / Made available in DSpace on 2016-06-28T12:18:13Z (GMT). No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Dissertacao Giovanni Correia.pdf: 2352633 bytes, checksum: af81ecb43db7a1390cce952e53aaff53 (MD5) / FAPES / Os modelos de árvores individuais são compostos por submodelos que estimam, geralmente, a competição, a mortalidade e o crescimento em diâmetro e altura de cada árvore. São usualmente adotados quando se deseja o melhor detalhamento da informação para estimar multiprodutos da floresta. Nesses modelos, as estimativas do crescimento em diâmetro a 1,30 m do solo (DAP) e a altura total (H) é obtida por meio de análise de regressão. Recentemente, técnicas de inteligência artificial estão sendo utilizadas com bom desempenho na mensuração florestal. Portanto, o objetivo desse trabalho foi avaliar o desempenho de técnicas de inteligência artificial (redes neurais artificiais e sistemas neuro-fuzzy) para estimar o crescimento em DAP e altura de árvores de eucalipto. Utilizou-se dados de inventários florestais contínuos de eucalipto, com medições anuais de DAP, altura total das 15 primeiras árvores da parcela e altura dominante, de acordo com o conceito de Assmann (1970), de 398 parcelas. O banco de dados foi dividido em 70% das parcelas para o treinamento das redes neurais artificiais e do sistema neuro-fuzzy; 15% das parcelas para a validação cruzada; e 15% das parcelas para validação dos sistemas. Com base nos resultados, notou-se que o índice de competição independente da distância 5 – IID5, proposto por Glover; Hool (1979), foi o que teve a maior correlação com as variáveis idade, crescimento em DAP e altura. Observou-se que as técnicas de inteligência artificial apresentaram boa precisão na estimativa do crescimento em DAP e altura total. As duas técnicas abordadas podem ser utilizadas para a prognose do DAP e altura total. / The models are composed of individual trees submodels estimating generally competition, mortality and growth height and diameter of each tree. Are usually adopted when you want the best detailed information to estimate forest multiproducts. In these models, estimates of growth in diameter at 1.30 m above the ground (DBH) and total height (H) is obtained by regression analysis. Recently, artificial intelligence techniques are being used with good performance in forest measurement. Therefore, the aim of this study was to evaluate the performance of artificial intelligence techniques (artificial neural networks and neuro-fuzzy systems) to estimate the growth in DAP and height of eucalyptus trees. We used continuous data eucalyptus forest inventories annually measurements DAP total height of the first 15 trees and dominant height of the portion, according to the concept of Assmann (1970), 398 parts. The database was divided into 70% of the plots for the training of artificial neural networks and neuro-fuzzy system; 15% of the plots for the cross-validation; and 15% of the plots for validating systems. Based on the results, it was noted that the independent competition index of distance 5 - IID5 proposed by Glover; Hool (1979), was the one that had the highest correlation with the age, growth in DAP and height. It was observed that the artificial intelligence techniques showed good accuracy in estimating the growth in DBH and total height. The two techniques discussed can be used for prognosis and overall height of DAP.
8

[en] HIBRID NEURO-FUZZY-GENETIC SYSTEM FOR AUTOMATIC DATA MINING / [pt] SISTEMA HÍBRIDO NEURO-FUZZY-GENÉTICO PARA MINERAÇÃO AUTOMÁTICA DE DADOS

MANOEL ROBERTO AGUIRRE DE ALMEIDA 20 August 2004 (has links)
[pt] Esta dissertação apresenta a proposta e o desenvolvimento de um sistema de mineração de dados inteiramente automático. O objetivo principal é criar um sistema que seja capaz de realizar a extração de informações obscuras a partir de bases de dados complexas, sem exigir a presença de um especialista técnico para configurá-lo. O sistema híbrido neuro-fuzzy hierárquico com particionamento binário (NFHB) vem apresentando excelentes resultados em tarefas de classificação de padrões e previsão, além de possuir importantes características não encontradas em outros sistemas similares, entre elas: aprendizado automático de sua estrutura; capacidade de receber um número maior de entradas abrangendo um maior número de aplicações; e geração de regras lingüísticas como produto de seu treinamento. Entretanto, este modelo ainda necessita de uma complexa parametrização inicial antes de seu treinamento, impedindo que o processo seja automático em sua totalidade. O novo modelo proposto busca otimizar a parametrização do sistema NFHB utilizando a técnica de coevolução genética, criando assim um novo sistema de mineração de dados completamente automático. O trabalho foi realizado em quatro partes principais: avaliação de sistemas existentes utilizados na mineração de dados; estudo do sistema NFHB e a determinação de seus principais parâmetros; desenvolvimento do sistema híbrido neuro-fuzzy-genético automático para mineração de dados; e o estudo de casos. No estudo dos sistemas existentes para mineração de dados buscou-se encontrar algum modelo que apresentasse bons resultados e ainda fosse passível de automatização. Várias técnicas foram estudadas, entre elas: Métodos Estatísticos, Árvores de Decisão, Associação de Regras, Algoritmos Genéticos, Redes Neurais Artificiais, Sistemas Fuzzy e Sistemas Neuro-Fuzzy. O sistema NFHB foi escolhido como sistema de inferência e extração de regras para a realização da mineração de dados. Deste modo, este modelo foi estudado e seus parâmetros mais importantes foram determinados. Além disso, técnicas de seleção de variáveis de entradas foram investigadas para servirem como opções para o modelo. Ao final, foi obtido um conjunto de parâmetros que deve ser automaticamente determinado para a completa configuração deste sistema. Um modelo coevolutivo genético hierárquico foi criado para realizar com excelência a tarefa de otimização do sistema NFHB. Desta forma, foi modelada uma arquitetura hierárquica de Algoritmos Genéticos (AG s), onde os mesmos realizam tarefas de otimização complementares. Nesta etapa, também foram determinados os melhores operadores genéticos, a parametrização dos AG s, a melhor representação dos cromossomas e as funções de avaliação. O melhor conjunto de parâmetros encontrado é utilizado na configuração do NFHB, tornando o processo inteiramente automático. No estudo de casos, vários testes foram realizados em bases de dados reais e do tipo benchmark. Para problemas de previsão, foram utilizadas séries de carga de energia elétrica de seis empresas: Cerj, Copel, Eletropaulo, Cemig, Furnas e Light. Na área de classificação de padrões, foram utilizadas bases conhecidas de vários artigos da área como Glass Data, Wine Data, Bupa Liver Disorders e Pima Indian Diabetes. Após a realização dos testes, foi feita uma comparação com os resultados obtidos por vários algoritmos e pelo NFHB original, porém com parâmetros determinados por um especialista. Os testes mostraram que o modelo criado obteve resultados bastante satisfatórios, pois foi possível, com um processo completamente automático, obter taxas de erro semelhantes às obtidas por um especialista, e em alguns casos taxas menores. Desta forma, um usuário do sistema, sem qualquer conhecimento técnico sobre os modelos utilizados, pode utilizá-lo para realizar mineração de banco de dados, extraindo informações e até mesmo conhecimento que podem auxiliá-lo em processos de tomada de decisão, o qual é o objetivo final de um processo de Knowledge Data Discovery. / [en] This dissertation presents the proposal and the development of a totally automatic data mining system. The main objective is to create a system that is capable of extracting obscure information from complex databases, without demanding the presence of a technical specialist to configure it. The Hierarchical Neuro-Fuzzy Binary Space Partitioning model (NFHB) has produced excellent results in pattern classification and time series forecasting tasks. Additionally, it provides important features that are not present in other similar systems, such as: automatic learning of its structure; ability to deal with a larger number of input variables, thus increasing the range of possible applications; and generation of linguistic rules as a result of its training process. However, this model depends on a complex configuration process before the training is performed, hindering to achieve a totally automatic system. The model proposed in this Dissertation tries to optimize the NFHB system parameters by using the genetic coevolution technique, thus creating a new automatic data mining system. This work consisted of four main parts: evaluation of existing systems used in data mining; study of the NFHB system and definition of its main parameters; development of the automatic hybrid neuro-fuzzy-genetic system for data mining; and case studies. In the study of existing data mining systems, the aim was to find a suitable model that could yield good results and still be automated. Several techniques have been studied, among them: Statistical methods, Decision Trees, Rules Association, Genetic Algorithms, Artificial Neural Networks, Fuzzy and Neuro- Fuzzy Systems. The NFHB System was chosen for inference and rule extraction in the data mining process. In this way, this model was carefully studied and its most important parameters were determined. Moreover, input variable selection techniques were investigated, to be used with the proposed model. Finally, a set of parameters was defined, which must be determined automatically for the complete system configuration. A hierarchical coevolutive genetic model was created to execute the system optimization task with efficiency. Therefore, a hierarchical architecture of genetic algorithms (GAs) was created, where the GAs execute complementary optimization tasks. In this stage, the best genetic operators, the GAs configuration, the chromossomes representation, and evaluation functions were also determined. The best set of parameters found was used in the NFHB configuration, making the process entirely automatic. In the case studies, various tests were performed with benchmark databases. For forecasting problems, six electric load series were used: Cerj, Copel, Eletropaulo, Cemig, Furnas and Light. In the pattern classification area, some well known databases were used, namely Glass Data, Wine Data, Bupa Liver Disorders and Pima Indian Diabetes. After the tests were carried out, a comparison was made with known models and with the original NFHB System, configured by a specialist. The tests have demonstrated that the proposed model generates satisfactory results, producing, with an automatic process, similar errors to the ones obtained with a specialist configuration, and, in some cases, even better results can be obtained. Therefore, a user without any technical knowledge of the system, can use it to perform data mining, extracting information and knowledge that can help him/her in decision taking processes, which is the final objective of a Knowledge Data Discovery process.
9

[en] HIERARCHICAL NEURO-FUZZY MODELS / [pt] MODELOS NEURO-FUZZY HIERÁRQUICOS

FLAVIO JOAQUIM DE SOUZA 13 December 2005 (has links)
[pt] Esta dissertação apresenta uma nova proposta de sistemas (modelos) neuro-fuzzy que possuem, além do tradicional aprendizado dos parâmetros, comuns às redes neurais e aos sistemas nero-fuzzy, as seguintes características: aprendizado de estrutura, a partir do uso de particionamentos recursisvos; número maior de entradas que o comumente encontrado nos sistemas neuro-fuzzy; e regras com hierarquia. A definição da estrutura é uma necessidade que surge quando da implementação de um determinado modelo. Pode-se citar o caso das redes neurais, em que se deve determinar (ou arbitrar) a priori sua estrutura (número de camadas e quantidade de neurônios por camadas) antes de qualquer teste. Um método automático de aprendizado da estrutura é, portanto, uma característica importante em qualquer modelo. Um sistema que também permita o uso de um número maior de entradas é interessante para se abranger um maior número de aplicações. As regras com hierarquia são um subproduto do método de aprendizado de estrutura desenvolvido nestes novos modelos. O trabalho envolveu três partes principais: um levantamento sobre os sistemas neuro-fuzzy existentes e sobre os métodos mais comuns de ajuste de parâmetros; a definição e implementação de dois modelos neuro-fuzzy hierárquicos; e o estudo de casos. No estudo sobre os sistemas neuro-fuzzy(SNF) fez-se um levantamento na bibliografia da área sobre as características principais desses sistemas, incluindo suas virtudes e deficiências. Este estudo gerou a proposta de uma taxonomia para os SNF, em função das características fuzzy neurais. Em virtude deste estudo constataram-se limitações quanto à capacidade de criação de sua própria estrutura e quanto ao número reduzido de entradas possíveis. No que se refere aos métodos de ajuste dos parâmetros abordou-se os métodos mais comuns utilizados nos SNF, a saber: o método dos mínimos quadrados com sua solução através de métodos numéricos iterativos; e o método gradient descent e seus derivados como o BackPropagation e o RProp(Resilient BackPropagation). A definição dos dois novos modelos neuro-fuzzy foi feita a partir do estudo das características desejáveis e das limitações dos SNF até então desenvolvidos. Observou-se que a base de regras dos SNF juntamente com os seus formatos de particionamento dos espaços de entrada e saída têm grande influência sobre o desempenho e as limitações destes modelos. Assim sendo, decidiu-se utilizar uma nova forma de particionamento que eliminasse ou reduzisse as limitações existentes- os particionamentos recursivos. Optou-se pelo uso dos particionamentos Quadtree e BSP, gerando os dois modelos NFHQ (Neuro-Fuzzy Hierárquico Quadree) e NFHB (Neiro-Fuzzy Hierárquico BSP). Com o uso de particionamentos obteve-se um nova classe de SNF que permitiu além do aprendizado dos parâmetros, também o aprendizado dos parâmetros. Isto representa um grande diferencial em relação aos SNF tradicionais, além do fato de se conseguir extender o limite do número de entradas possíveis para estes sistemas. No estudo de casos, os dois modelos neurofuzzy hierárquicos foram testados 16 casos diferentes, entre as aplicações benchmarks mais tradicionais da área e problemas com maior número de entradas. Entre os casos estudados estão: o conjunto de dados IRIS; o problema das duas espirais; a previsão da série caótica de Mackey- Glass; alguns sistemas de diagnóstico e classificação gerados a partir de conjuntos de dados comumente utilizados em artigos de machine learning e uma aplicação de previsão de carga elétrica. A implementação dos dois novos modelos neuro-fuzzy foi efetuada em linguagem pascal e com o uso de um compilador de 32 bits para micros da linha PC (Pentium) com sistema operacional DOS 32 bits, Windows, ou Linux. Os testes efetuados demostraram que: esses novos modelos se ajustam bem a qualquer conjunto de dados; geram sua própria estrutura; ajustam seus parâmetros com boa generalização e extraem / [en] This dissertation presents a new proposal of neurofuzzy systems (models), which present, in addition to the learning capacity (which are common to the neural networks and neurofuzzy systems) the following features: learning of the structure; the use of recursive partitioning; a greater number of inputs than usually allowed in neurofuzzy systems; and hierarchical rules. The structure´s definition is needed when implementing a certain model. In the neural network case, for example, one must, first of all, estabilish its structure (number of layers and number of neurons per layers) before any test is performed. So, an important feature for any model is the existence of an automatic learning method for creating its structure. A system that allows a larger number of inputs is also important, in order to extend the range of possible applications. The hierarchical rules feature results from the structure learning method developed for these two models. The work has involved three main parts: study of the existing neurofuzzy systems and of the most commom methods to adjust its parameters; definition and implementation of two hierarchical neurofuzzy models; and case studies. The study of neurofuzzy systems (NFS) was accomplished by creating a survey on this area, including advantages, drawbacks and the main features of NFS. A taxonomy about NFS was then proposed, taking into account the neural and fuzzy features of the existing systems. This study pointed out the limitations of neurofuzzy systems, mainly their poor capability of creating its own structure and the reduced number of allowed inputs. The study of the methods for parameter adjustment has focused on the following algorithms: Least Square estimator (LSE) and its solutions by numerical iterative methods; and the basic gradient descent method and its offsprings such as Backpropagation and Rprop (Resilient Backpropagation). The definition of two new neurofuzzy models was accomplished by considering desirable features and limitations of the existing NFS. It was observed that the partitioning formats and rule basis of the NFS have great influence on its performance and limitations. Thus, the decision to use a new partitioning method to remove or reduce the existing limitations - the recursive partitioning. The Quadtree and BSP partitioning were then adopted, generating the so called Quadree Hierarchical Neurofuzzy model (NFHQ) and the BSP hierarchical Neurofuzzy model (NFHB). By using these kind os partitioning a new class of NFS was obtained allowing the learning of the structure in addition to parameter learning. This Feature represents a great differential in relation to the traditional NFS, besides overcoming the limitation in the number of allowed inputs. In the case studies, the two neurofuzzy models were tested in 16 differents cases, such as traditional benchmarks and problems with a greater number of inputs. Among the cases studied are: the IRIS DATA set; the two spirals problem; the forecasting of Mackey-Glass chaotic time series; some diagnosis and classifications problems, found in papers about machine learning; and a real application involving load forecasting. The implementation of the two new neurofuzzy models was carried out using a 32 bit Pascal compiler for PC microcomputers using DOS or Linux operating system. The tests have shown that: these new models are able to adjust well any data sets; they create its own struture; they adjust its parameters, presenting a good generalization performance; and automatically extract the fuzzy rules. Beyond that, applications with a greater number of inputs for these neurofuzzy models. In short two neurofuzzy models were developed with the capability of structure learning, in addition to parameter learning. Moreover, these new models have good interpretability through hierarchical fuzzy rules. They are not black coxes as the neural networks.
10

Avaliação da adequabilidade de redes neurais artificiais e sistemas neuro-fuzzy no apoio à predição de desempenho de cadeias de suprimento baseada no SCOR® / Evaluation of the adequability of artificial neural network and neuro-fuzzy systems to deal with supply chain performance prediction based on SCOR®

Lima Junior, Francisco Rodrigues 02 December 2016 (has links)
Sistemas de predição de desempenho de cadeias de suprimento são constituídos por indicadores que visam estimar o desempenho da empresa-foco em decorrência também do desempenho dos indicadores dos fornecedores. Na literatura são encontrados apenas dois modelos quantitativos (GANGA; CARPINETTI, 2011; AGAMI; SALEH; RASMY, 2014) que permitem predizer o desempenho de cadeias de suprimento usando os indicadores do modelo SCOR® (Supply Chain Operations Reference). Uma limitação de ambos modelos é a dificuldade de se ajustar ao ambiente de uso, uma vez que sua implementação e atualização requerem a parametrização manual de muitas regras de decisão. Tanto o uso de redes neurais quanto de sistemas neuro-fuzzy têm o potencial de contornar essa dificuldade por utilizarem um mecanismo de aprendizagem que possibilita a adaptação ao ambiente de uso usando dados numéricos. Todavia, na literatura não são encontradas aplicações dessas técnicas no apoio à predição de desempenho de cadeias de suprimento, tampouco estudos que discutam qual dessas técnicas se mostra mais adequada para lidar com este problema. Diante disso, o objetivo desta pesquisa é construir e a avaliar a adequabilidade de dois sistemas de predição de desempenho, ambos baseados nos indicadores do modelo SCOR®, mas usando alternativamente as técnicas redes neurais e sistemas neuro-fuzzy, para apoiar a gestão de desempenho da empresa-foco e de sua cadeia imediata. A execução desta pesquisa envolveu o uso de simulação computacional e de testes estatísticos. Os resultados mostram que, embora ambas as técnicas apresentem capacidade de predição satisfatória, as redes neurais são mais adequadas em relação à complexidade da definição da configuração topológica, enquanto os sistemas neuro-fuzzy se sobressaíram em relação à capacidade de predição, complexidade do treinamento, quantidade de variáveis de entrada, suporte à tomada de decisão sob incerteza e interpretabilidade dos dados. Outros resultados desta pesquisa estão relacionados à identificação de particularidades do processo de modelagem das técnicas avaliadas, à elaboração de um panorama sobre o uso de técnicas quantitativas na avaliação de desempenho de cadeias de suprimento e à identificação de algumas oportunidades de pesquisa. / Supply chain performance prediction systems are composed by indicators that aim to estimate the performance of a focal company considering also indicators related to their suppliers. There are two quantitative models in the literature (GANGA; CARPINETTI, 2011; AGAMI; SALEH; RASMY, 2014) that enable to predict the supply chain performance using the indicators proposed by the SCOR® model (Supply Chain Operations Reference). Nevertheless, there is a drawback of both models that refers to the difficulty in adapting to the environment of use, since implementation and updating of these models require parameterization of many decision rules that must be done by an expert. The application of artificial neural networks as well as neuro-fuzzy systems can overcome this drawback by using a learning mechanism that enables the adaptation to the environment of use using numerical data on supply chain performance. However, there are neither studies in the literature that propose the use of these techniques in order to support supply chain performance prediction nor studies that discuss which of these techniques seem to be more appropriate to deal with this problem. Thus, the objective of this study is to propose and evaluate the adequability of the two types of performance prediction systems based on the performance indicators of the SCOR® model, and both using alternatively artificial neural networks and neuro-fuzzy systems to support performance management of a focal company and their supply chain. The implementation of this research involved the use of computer simulation and statistical tests. The results show that although both techniques present a satisfactory predictive capacity, neural networks are more appropriate in relation to the complexity of defining the topological configuration, whereas the neuro-fuzzy systems are more adequate regarding the predictive capacity, complexity of the training, amount of input variables, support to decision-making under uncertainty and interpretability of data. Other results of this research refer to the identification of characteristics of the modeling process of the evaluated techniques, as well as to the review on the use of quantitative techniques for supply chain performance evaluation and to the identification of some research opportunities.

Page generated in 0.0742 seconds