• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 1
  • Tagged with
  • 14
  • 14
  • 14
  • 9
  • 6
  • 5
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Avaliação da adequabilidade de redes neurais artificiais e sistemas neuro-fuzzy no apoio à predição de desempenho de cadeias de suprimento baseada no SCOR® / Evaluation of the adequability of artificial neural network and neuro-fuzzy systems to deal with supply chain performance prediction based on SCOR®

Francisco Rodrigues Lima Junior 02 December 2016 (has links)
Sistemas de predição de desempenho de cadeias de suprimento são constituídos por indicadores que visam estimar o desempenho da empresa-foco em decorrência também do desempenho dos indicadores dos fornecedores. Na literatura são encontrados apenas dois modelos quantitativos (GANGA; CARPINETTI, 2011; AGAMI; SALEH; RASMY, 2014) que permitem predizer o desempenho de cadeias de suprimento usando os indicadores do modelo SCOR® (Supply Chain Operations Reference). Uma limitação de ambos modelos é a dificuldade de se ajustar ao ambiente de uso, uma vez que sua implementação e atualização requerem a parametrização manual de muitas regras de decisão. Tanto o uso de redes neurais quanto de sistemas neuro-fuzzy têm o potencial de contornar essa dificuldade por utilizarem um mecanismo de aprendizagem que possibilita a adaptação ao ambiente de uso usando dados numéricos. Todavia, na literatura não são encontradas aplicações dessas técnicas no apoio à predição de desempenho de cadeias de suprimento, tampouco estudos que discutam qual dessas técnicas se mostra mais adequada para lidar com este problema. Diante disso, o objetivo desta pesquisa é construir e a avaliar a adequabilidade de dois sistemas de predição de desempenho, ambos baseados nos indicadores do modelo SCOR®, mas usando alternativamente as técnicas redes neurais e sistemas neuro-fuzzy, para apoiar a gestão de desempenho da empresa-foco e de sua cadeia imediata. A execução desta pesquisa envolveu o uso de simulação computacional e de testes estatísticos. Os resultados mostram que, embora ambas as técnicas apresentem capacidade de predição satisfatória, as redes neurais são mais adequadas em relação à complexidade da definição da configuração topológica, enquanto os sistemas neuro-fuzzy se sobressaíram em relação à capacidade de predição, complexidade do treinamento, quantidade de variáveis de entrada, suporte à tomada de decisão sob incerteza e interpretabilidade dos dados. Outros resultados desta pesquisa estão relacionados à identificação de particularidades do processo de modelagem das técnicas avaliadas, à elaboração de um panorama sobre o uso de técnicas quantitativas na avaliação de desempenho de cadeias de suprimento e à identificação de algumas oportunidades de pesquisa. / Supply chain performance prediction systems are composed by indicators that aim to estimate the performance of a focal company considering also indicators related to their suppliers. There are two quantitative models in the literature (GANGA; CARPINETTI, 2011; AGAMI; SALEH; RASMY, 2014) that enable to predict the supply chain performance using the indicators proposed by the SCOR® model (Supply Chain Operations Reference). Nevertheless, there is a drawback of both models that refers to the difficulty in adapting to the environment of use, since implementation and updating of these models require parameterization of many decision rules that must be done by an expert. The application of artificial neural networks as well as neuro-fuzzy systems can overcome this drawback by using a learning mechanism that enables the adaptation to the environment of use using numerical data on supply chain performance. However, there are neither studies in the literature that propose the use of these techniques in order to support supply chain performance prediction nor studies that discuss which of these techniques seem to be more appropriate to deal with this problem. Thus, the objective of this study is to propose and evaluate the adequability of the two types of performance prediction systems based on the performance indicators of the SCOR® model, and both using alternatively artificial neural networks and neuro-fuzzy systems to support performance management of a focal company and their supply chain. The implementation of this research involved the use of computer simulation and statistical tests. The results show that although both techniques present a satisfactory predictive capacity, neural networks are more appropriate in relation to the complexity of defining the topological configuration, whereas the neuro-fuzzy systems are more adequate regarding the predictive capacity, complexity of the training, amount of input variables, support to decision-making under uncertainty and interpretability of data. Other results of this research refer to the identification of characteristics of the modeling process of the evaluated techniques, as well as to the review on the use of quantitative techniques for supply chain performance evaluation and to the identification of some research opportunities.
12

[en] NEURO-FUZZY BSP HIERARCHICAL SYSTEM FOR TIME FORECASTING AND FUZZY RULE EXTRACTION DOR DATA MINING APPLICATONS / [pt] SISTEMA NEURO-FUZZY HIERÁRQUICO BSP PARA PREVISÃO E EXTRAÇÃO DE REGRAS FUZZY EM APLICAÇÕES DE DATA MINING

ALBERTO IRIARTE LANAS 11 October 2005 (has links)
[pt] Esta dissertação investiga a utilização de um sistema Neuro-Fuzzy Hierárquico para previsão de séries e a extração de regras fuzzy em aplicações de Mineração de Dados. O objetivo do trabalho foi estender o modelo Neuro- Fuzzy Hierárquico BSP para a classificação de registros e a previsão de séries temporais. O processo de classificação de registros no contexto de Mineração de Dados consiste na extração de regras de associação que melhor caracterizem, através de sua acurácia e abrangência, um determinado grupo de registros de um banco de dados (BD). A previsão de séries temporais, outra tarefa comum em Mineração de Dados tem como objetivo prever o comportamento de uma série temporal no instante t+k (k ? 1).O trabalho consistiu de 5 etapas principais: elaborar um survey dos principais sistemas e modelos mais utilizados nas aplicações de Mineração de Dados; avaliar o desempenho do sistema NFHB original em aplicações de Mineração de Dados; desenvolver uma extensão do modelo NFHB dedicado à classificação de registros em uma BD; desenvolver um novo modelo híbrido Neuro-Fuzzy Genético para o ajuste automático dos parâmetros do sistema dedicado a previsão de séries temporais; e o estudo dos casos. O estudo da área resultou num survey sobre os principais modelos para Mineração de Dados. São apresentados os modelos mais utilizados em tarefas de classificação e extração de regras tais como: redes neurais, árvores de decisão crisp e fuzzy, algoritmos genéticos, estatística e sistemas neuro-fuzzy. Na etapa de avaliação do modelo NFHB original, foi verificado que além do tradicional aprendizado dos parâmetros, comuns às redes neurais e aos sistemas neuro-fuzzy, o modelo possui as seguintes aracterísticas: aprendizado da estrutura, a partir do uso de particionamentos recursivos; número maior de entradas que o habitualmente encontrado nos sistemas neuro-fuzzy; e regras com hierarquia, características adequadas para as aplicações de Mineração de Dados. Entretanto, o processo de extração de regras e a seleção de atributos não são adequados para este tipo de aplicação, assim como a excessiva complexidade da parametrização do modelo para aplicações de previsão de séries temporais. Uma extensão ao modelo NFHB original foi então proposta para aplicações de classificação de registros no contexto da Mineração de Dados onde se têm como objetivo principal a extração de informação em forma de regras interpretáveis. Foi necessário modificar a seleção de atributos e o processo original de extração de regras. O sistema fuzzy do tipo Takagi-Sugeno do modelo NFHB original fornece regras inadequadas do ponto de vista da Mineração de Dados. O novo modelo NFHB, dotado das modificações necessárias, mostrou um ótimo desempenho na extração de regras fuzzy válidas que descrevem a informação contida no banco de dados. As medidas de avaliação normalmente usadas para analisar regras crisp (Se x1 é <14.3 e...), como abrangência e acurácia, foram modificadas para poderem ser aplicadas ao caso de avaliação das regras fuzzy (Se x1 é Baixo e..) extraídas pelo sistema NFHB após da fase de aprendizado. A quantidade e a qualidade das regras extraídas é um ponto fundamental dos sistemas voltados para aplicações de Mineração de Dados, que buscam sempre obter o menor número de regras e da maior qualidade possível. Nesse sentido, o processo de seleção das características de entrada foi alterado para evitar particionamentos excessivos, ou seja regras desnecessárias. Foram implementadas duas estratégias de seleção (Fixa e Adaptativa) em função de diferentes medidas de avaliação como a Entropia e o método de Jang. Um novo modelo híbrido neuro-fuzzy genético para previsão de séries temporais foi criado para resolver o problema da excessiva complexidade de parametrização do sistema, o qual conta com mais de 15 parâmetros.Foi proposto um novo modelo híbrido neuro-fuzzy genético capaz de evoluir e obter um conjunto de parâmetros adequado par / [en] This dissertation investigates the use of a Neuro-Fuzzy Hierarchical system for time series forecasting and fuzzy rule extraction for Data Mining applications. The objective of this work was to extend the Neuro-Fuzzy BSP Hierarchical model for the classification of registers and time series forecasting. The process of classification of registers in the Data Mining context consists of extracting association rules that best characterise, through its accuracy and coverage measures, a certain group of registers of database (DB). The time series forecasting other common task in Data Mining, has a main objective to foresee the behavior of a time series in the instant t+k (k>=1). The work consisted of 5 main stages: to elaborate a survey of the main systems and the most common models in Data Mining applications; to evaluate the performance of the original NFHB system in Data Mining applicatons; to develop an extension of the NFHB model dedicated to the classification of registers in a DB; to develop a new Neuro-Fuzzy Genetic hybrid model for the automatic adjustment of the parameters of the system for time series forecasting applicatons; and the case estudies. The study of the area resulted in a survey of the main Data Mining models. The most common methods used in Data Mining application are presented such as: neural nets, crisp and fuzzy decision trees, genetic algorithms, statistics and neuro-fuzzy systems. In the stage of evaluation of the original NFHB model, it verified that besides the traditional learning of the parameters, common to the neural nets and the neuro-fuzzy systems, the model possesses the following characteristics: learning of the structure; recursive partitioning; larger number of inputs than usually found on the neuro-fuzzy systems; rule with hierarchy; which are characteristics adapted for Data Mining applications. However the rule extraction process and attributes selection are not appropriate for this type of applications, as well as the excessive complexity of the tuning of the model for time series forecasting applicatons. An extension of the original NFHB model was then proposed for applicatons of classification of registers in the Data Mining context, where the main objective in the extraction of information in form of interpratable rules. It was necessary to modify the attributes selection and the original rule extraction process. The Takagi-Sugeno fuzzy system of the original NFHB model supplies inadequate rules, from the Data Mining point of view. The new NFHB models, endowed with necessary modifications, showed good performance in extracting valid fuzzy rules that describe the information contained in the database. The evaluation metrics, usually used to analyse crips rules (If x1 is <14.3 and), as coverage and accuracy, were modified to be applied to the evaluation of the fuzzy rules (If x1 is Low and) extracted from the NFHB system after the learning process. The amount and quality of the extracted rules are important points of the systems dedicated for Data Mining applicatons, where the target is to obtain the smallest number of rules and of the best quality. In that sense, the input selection strategies were implemented (Static and Adaptive), using different evaluation measures as Entropy and the jang algorithm. A new genetic neuro-fuzzy hybrid model for time series forecasting was created to solve the problem of the excessive complexity of the model tuning, which comprises more than 15 parameters. A new model wes proposed, a genetic neuro-fuzzy hybrid, model capable to develop and to obtain an appropriate set of parameters for the forecasting of time series. The new hybrid, model capable to develop and to obtain an appropriate set of parameters for the forecasting of time series. The new hybrid model presented good results with different types of series. A tool based on the NFHB model was developed for classification and forecasting applications. Th
13

[en] SPOT PRICE FORECASTING IN THE ELECTRICITY MARKET / [pt] PREVISÃO DO PREÇO SPOT NO MERCADO DE ENERGIA ELÉTRICA

LUCIO DE MEDEIROS 14 April 2004 (has links)
[pt] O objetivo da tese é propor uma metodologia para previsão do preço de curto prazo (spot) da energia elétrica no Brasil baseada em sistemas neuro-fuzzy e nos programas do planejamento da operação do sistema elétrico brasileiro. Com essa abordagem, obtém-se distribuições estimadas do preço spot para o curto prazo com menor dispersão do que as obtidas somente com os programas do planejamento da operação. Além disso, por ser rápido, o sistema de previsão final possibilita análises de cenários ou simulações Monte Carlo. As principais variáveis que afetam o preço spot no Brasil são consideradas, tais como a energia natural afluente e a energia armazenada, entre outras. Ainda, é possível incluir também variáveis que não têm um histórico definido ou dados suficientes para o treinamento, tais como o plano de obras, limites de intercâmbio, demanda etc. Comparações com modelos de redes neurais são feitas. Apresenta-se, também, o estado da arte em modelagem para a política e o mercado de energia elétrica e os principais conceitos de gerenciamento de risco no mercado de eletricidade. / [en] This thesis focuses on spot price forecasting and risk management in the Brazilian electricity industry. It is proposed a new methodology for the problem based on neuro- fuzzy systems and the dispatching and planning operation programs. The main advantage of the approach is to be able to get more informative spot price distributions than using the operation and planning programs alone. Furthermore, it allows Monte Carlo simulations or scenarios analysis as the forecasting system runs in less than 1 minute. The main variables which affect the spot price (inflow river, storage capacity of reservoir, among others) are included in the model. Even variables such as the interchange limits, without a well-defined time series and which could be important, could also be included because of the intrinsic characteristics of each fuzzy model. Comparisons with neural networks models are made. It is also presented the state-of-the-art in the market and politics modelling for the electricity market around the world, as well as some main concepts of the risk management.
14

Processamento Inteligente de Sinais de Press?o e Temperatura Adquiridos Atrav?s de Sensores Permanentes em Po?os de Petr?leo

Pires, Paulo Roberto da Motta 06 February 2012 (has links)
Made available in DSpace on 2014-12-17T14:08:50Z (GMT). No. of bitstreams: 1 PauloRMP_capa_ate_pag32.pdf: 5057325 bytes, checksum: bf8da0b02ad06ee116c93344fb67e976 (MD5) Previous issue date: 2012-02-06 / Originally aimed at operational objectives, the continuous measurement of well bottomhole pressure and temperature, recorded by permanent downhole gauges (PDG), finds vast applicability in reservoir management. It contributes for the monitoring of well performance and makes it possible to estimate reservoir parameters on the long term. However, notwithstanding its unquestionable value, data from PDG is characterized by a large noise content. Moreover, the presence of outliers within valid signal measurements seems to be a major problem as well. In this work, the initial treatment of PDG signals is addressed, based on curve smoothing, self-organizing maps and the discrete wavelet transform. Additionally, a system based on the coupling of fuzzy clustering with feed-forward neural networks is proposed for transient detection. The obtained results were considered quite satisfactory for offshore wells and matched real requisites for utilization / Originalmente voltadas ao monitoramento da opera??o, as medi??es cont?nuas de press?o e temperatura no fundo de po?o, realizadas atrav?s de PDGs (do ingl?s, Permanent Downhole Gauges), encontram vasta aplicabilidade no gerenciamento de reservat?rios. Para tanto, permitem o monitoramento do desempenho de po?os e a estimativa de par?metros de reservat?rios no longo prazo. Contudo, a despeito de sua inquestion?vel utilidade, os dados adquiridos de PDG apresentam grande conte?do de ru?do. Outro aspecto igualmente desfavor?vel reside na ocorr?ncia de valores esp?rios (outliers) imersos entre as medidas registradas pelo PDG. O presente trabalho aborda o tratamento inicial de sinais de press?o e temperatura, mediante t?cnicas de suaviza??o, mapas auto-organiz?veis e transformada wavelet discreta. Ademais, prop?e-se um sistema de detec??o de transientes relevantes para an?lise no longo hist?rico de registros, baseado no acoplamento entre clusteriza??o fuzzy e redes neurais feed-forward. Os resultados alcan?ados mostraram-se de todo satisfat?rios para po?os marinhos, atendendo a requisitos reais de utiliza??o dos sinais registrados por PDGs

Page generated in 0.3422 seconds