Spelling suggestions: "subject:"cistemas dde fotopolimerización dde fármacos"" "subject:"cistemas dde fotopolimerización dee fármacos""
1 |
Desarrollo de nanodispositivos basados en nanoestrellas de oro y nanopartículas mesoporosas de sílice para la fotoliberación de fármacos empleando radiaciones del infrarrojo cercano con potenciales aplicaciones en la terapia del cáncerHernández Montoto, Andy 14 January 2019 (has links)
[ES] En este trabajo se han desarrollado cinco sistemas de fotoliberación de doxorrubicina basados en tres tipos de nanopartículas: nanoestrellas de oro recubiertas de una capa mesoporosa de sílice (AuNSt@mSiO2), nanoestrellas de oro (AuNSt) y nanopartículas Janus formadas por nanoestrellas de oro y nanopartículas mesoporosas de sílice (AuNSt-MSNP). Los sistemas sintetizados se basan en dos mecanismos de activación de la liberación, asociados con las propiedades ópticas de las AuNSts. El primer mecanismo está relacionado con la conversión de la energía luminosa en calor, debido a la absorción de la radiación electromagnética por las partículas de oro. El calor generado durante la irradiación de las nanopartículas con un láser del infrarrojo cercano (NIR) se usa, en este caso como estímulo para activar la liberación del fármaco asociado a las nanopartículas. El otro mecanismo está relacionado con la amplificación del campo electromagnético de la radiación en la superficie de las nanopartículas. La amplificación del campo electromagnético favorece la absorción multifotónica de las radiaciones NIR en moléculas que absorben un fotón de mayor energía. Utilizando este mecanismo, se puede activar la fotoliberación del fármaco mediante el empleo de ligandos fotolábiles, que pueden enlazar directamente el fármaco a la partícula permitiendo su liberación después de la fotodescomposición.
El primer sistema desarrollado está constituido por AuNSt@mSiO2 funcionalizadas con moléculas de parafina que actúan como puertas moleculares termosensibles. Estas moléculas de parafina en la superficie externa de los poros evitan la liberación de la doxorrubicina. La irradiación del sistema produce la fusión de la parafina debido al calor generado, provocando la liberación al medio del fármaco.
Los otros sistemas desarrollados están basados en dos profármacos de la doxorrubicina que se activan al irradiarlas en presencia de las AuNSts generando el fármaco correspondiente. La doxorrubicina se modifica a través de un enlace carbamato con dos ligandos fotolábiles que poseen un espaciador 2-nitrobencílico. Uno de estos ligandos tiene un grupo disulfuro que permite unir el profármaco a la superficie de las AuNSts. La activación se produce debido a la absorción multifotónica de la radiación NIR por los profármacos que se favorece en presencia de las AuNSts, provocando la ruptura del ligando fotolábil y la generación de la doxorrubicina.
También se obtuvo un sistema formado por nanopartículas Janus AuNSt-MSNP. El fármaco se encapsula en la MSNP que se funcionaliza con un complejo supramolecular entre el benzimidazol, unido covalentemente a la superficie externa de los poros, y la β-ciclodextrina. Este complejo actúa como puerta molecular sensible al pH evitando la difusión de la doxorrubicina. La superficie de la AuNSt se funcionaliza con un ligando fotolabil tiolado que posee un espaciador 2-nitrobencílico y que tiene enlazado el ácido succínico. La irradiación del sistema híbrido produce la descomposición del ligando en la superficie de la AuNSt y la generación de ácido succínico que provoca la disociación del complejo supramolecular en la superficie de la MSNP, conduciendo finalmente a la liberación del fármaco.
Por último, se obtuvo un sistema basado en AuNSt@mSiO2 funcionalizadas con moléculas de polietilenglicol a través de un ligando fotolábil que tiene un espaciador 2-nitrobencílico. El polietilenglicol modificado con el ligando fotolábil actúa como puerta molecular fotosensible impidiendo la difusión del fármaco encapsulado. Al irradiar las partículas se produce la descomposición del ligando, la liberación del PEG y la difusión del fármaco. / [CA] En aquest treball s'han desenvolupat cinc sistemes de foto-alliberació de doxorrubicina basats en tres tipus de nano-partícules: nano-estreles d'or recobertes d'una capa mesoporosa de sílice (AuNSt@mSiO2), nano-estreles d'or (AuNSt) i nano-partícules Janus formades per nano-estreles d'or i nano-partícules mesoporoses de sílice (AuNSt-MSNP). Els sistemes sintetitzats es basen en dos mecanismes d'activació de l'alliberament associats amb les propietats òptiques de les AuNSts. El primer mecanisme està relacionat amb la conversió de l'energia lluminosa en calor degut a l'absorció de la radiació electromagnètica per les partícules d'or. La calor generat durant la irradiació de les nano-partícules amb un làser de l'infraroig pròxim (NIR) pot utilitzar-se com a estímul per a activar l'alliberament del fàrmac associat a les nano-partícules. L'altre mecanisme està relacionat amb l'amplificació del camp electromagnètic de la radiació en la superfície de les nano-partícules. L'amplificació del camp electromagnètic afavoreix l'absorció multifotònica de les radiacions NIR en molècules que absorbeixen un fotó de major energia. Utilitzant aquest mecanisme es pot activar la foto-alliberació del fàrmac per mitjà de l'ús de lligants foto-làbils que poden enllaçar directament el fàrmac a la partícula permetent el seu alliberament després de la foto-descomposició.
El primer sistema desenvolupat està constituït per AuNSt@mSiO2 funcionalitzada amb molècules de parafines que actuen com a portes moleculars termosensibles. Aquestes molècules unides a la superfície externa dels porus eviten la difusió de la doxorrubicina. La irradiació del sistema produeix la fusió de la parafina a causa de la calor generada, provocant l'alliberament al medi del fàrmac.
Els altres sistemes desenvolupats estan basats en dos prodrogues de doxorrubicina que s'activen a l'irradiar-les en presència de les AuNSts generant la droga corresponent. La doxorrubicina es modifica a través d'un enllaç carbamat amb dos lligants foto-làbils que posseeixen un espaiador 2-nitrobencílic. Un dels lligants té un grup disulfur que permet unir la prodroga a la superfície de les AuNSts. L'activació es produeix a causa de l'absorció multifotònica de la radiació NIR per les prodrogues que s'afavorix en presència de les AuNSts, provocant la ruptura del lligant foto-làbil i la generació de la doxorrubicina.
També es va obtindre un sistema format per nano-partícules Janus AuNSt-MSNP. El fàrmac s'encapsula en la nanopartícula mesoporosa de sílice que es funcionalitza amb un complex supramolecular entre el benzimidazol, unit covalentment a la superfície externa dels porus, i la β-ciclodextrina. Este complex actua com a porta molecular sensible al pH evitant la difusió de la doxorrubicina. La superfície de la AuNSt es funcionaliza amb un lligant foto-làbil tiolat que posseeix un espaiador 2-nitrobencílic i que té enllaçat l'àcid succínic. La irradiació del sistema híbrid produeix la descomposició del lligant en la superfície de l'AuNSt i la generació d'àcid succínic que provoca la dissociació del complex supramolecular en la superfície de la MSNP conduint finalment a l'alliberament de la droga encapsulada.
Finalment, es va obtindre un sistema basat en AuNSt@mSiO2 funcionalitzada amb molècules de polietilenglicol a través d'un lligant foto-làbil que té un espaiador 2-nitrobencílic. El polietilenglicol modificat amb el lligant fotolábil actua com a porta molecular fotosensible impedint la difusió de la droga encapsulada. A l'irradiar les partícules es produeix la descomposició del lligant, l'alliberament del PEG i la difusió del fàrmac des de l'interior dels porus. / [EN] Herein, five doxorubicin photo-release systems based on three types of nanoparticles: gold nanostars coated with a mesoporous silica shell (AuNSt@mSiO2), gold nanostars (AuNSts) and Janus gold nanostars-mesoporous silica nanoparticles (AuNSt-MSNP) have been developed. Photo-release mechanisms are directly related to optical properties of AuNSts. One of them is concerned to the light-heat energy conversion efficiency of AuNSts due to localized surface plasmon resonance associated with the strong absorption of electromagnetic radiation at near infrared wavelengths by anisotropic nanoparticles. Heat evolved during the irradiation of nanoparticles with NIR laser is used as stimulus for triggering drug delivery from the nanoparticles. Another mechanism is related to the strong electromagnetic field enhancement taking place onto nanoparticle¿s surface, which could favour multiphoton absorption of NIR radiations by photolabile molecules. Drug photo-release can be triggered by using photolabile linker which attaches drug to nanoparticle surface due to multiphoton molecular dissociation of linker induced by NIR irradiation.
The first developed system is formed by AuNSts coated with mesoporous silica shell capped with paraffins, which act as thermo-sensitive molecular gates. These paraffin molecules onto the external silica surface form a hydrophobic layer that blocks the pores and avoids drug release. NIR irradiation of the hybrid nanoparticles produces plasmonic heating of nanoparticle¿s surrounding and subsequent paraffin melting and drug delivery.
Other developed systems are based on two doxorubicin prodrugs, which can be activated by NIR laser irradiation in presence of AuNSts. Doxorubicin was coupled with two photolabile molecules bearing a 2-nitrobenzyl linker via carbamate linkage. One of them has a disulphide group, allowing directly attachment of the prodrug to the nanoparticle¿s surface. Multiphoton absorption of NIR radiation by the doxorubicin prodrug is favoured in presence of AuNSts provoking molecular photodissociation of the 2-nitrobenzyl linker and drug release.
A system based on Janus AuNSt-MSNP was also synthesized. Doxorubicin was loaded into MSNPs functionalized onto external surface with a supramolecular complex between benzimidazole (Bzi) and β-cyclodextrin (CD), which acts as pH sensitive molecular gate. AuNSts were modified with thiolated photolabile molecules bearing a 2-nitrobenzyl linker, which anchor succinic acid to nanoparticle¿s surface. NIR irradiation of the hybrid nanoparticles produce photocleavage of 2-nitrobenzyl linker and succinic acid release resulting in dissociation of the Bzi-CD complex and doxorubicin delivery from MSNPs.
Finally, a system based on AuNSts coated with mesoporous silica shell capped with polyethyleneglycol (PEG) molecules bearing a 2-nitrobenzyl linker, was developed. These modified PEG molecules act as photosensitive molecular gates, preventing drug release from the mesoporous silica shell. NIR irradiation of these nanoparticles produces the photodissociation of 2-nitrobenzyl linker, leading to PEG release and doxorubicin delivery from the mesoporous silica. / Hernández Montoto, A. (2018). Desarrollo de nanodispositivos basados en nanoestrellas de oro y nanopartículas mesoporosas de sílice para la fotoliberación de fármacos empleando radiaciones del infrarrojo cercano con potenciales aplicaciones en la terapia del cáncer [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/115488
|
2 |
Nanodispositivos inteligentes para liberación controlada de fotosensibilizadores en terapia fotodinámicaGorbe Moya, Mónica 19 January 2025 (has links)
[ES] La terapia fotodinámica (PDT) y la terapia fototérmica (PTT) son alternativas prometedoras, poco invasivas y muy localizadas a los tratamientos tradicionales contra el cáncer. Ambas se basan en la acción de transductores de energía lumínica (fotosensibilizadores, PS o agentes fototérmicos, PTA) responsables de la transducción de la energía lumínica en mediadores químicos o energía térmica, respectivamente, y la consiguiente destrucción de los tejidos tumorales. En la PDT, la activación con
luz de un PS, genera oxígeno singlete y otras especies de oxígeno reactivo (ROS) al reaccionar con el oxígeno molecular, y destruyendo los tejidos tumorales y su microvasculatura. El éxito de esta terapia se basa en la elección de un PS óptimo que absorba luz de la longitud de onda apropiada para penetrar suficientemente en los tejidos y que tenga las propiedades fotofísicas adecuadas. En este trabajo hemos
sintetizado un panel de cinco PS del tipo BODIPY, tres de ellos completamente nuevos, y hemos caracterizado su estructura y actividad fotodinámica y citotóxica.
En la terapia fototérmica, la irradiación de PTAs que actúan como transductores de la energía lumínica en energía térmica, provoca un aumento de temperatura localizado capaz de dañar las estructuras celulares, destruyendo el tejido tumoral y activando respuestas inmunitarias. En este trabajo utilizamos como PTAs nanopartículas de oro, que se caracterizan por sus propiedades ópticas únicas. En concreto utilizamos nanoestrellas de oro (AuNSt) cuya banda de resonancia de plasmón localizada (LSPR) se localiza en la región del infrarrojo cercano (NIR) del espectro electromagnético. La morfología y composición de las AuNSts provoca un fuerte aumento del campo electromagnético a su alrededor cuando sus electrones de conducción se excitan con luz NIR. Este efecto, además de provocar grandes aumentos de temperatura en su superficie, facilita la absorción multifotónica de ciertos compuestos orgánicos fotolábiles, lo que permite el desarrollo de nanodispositvos capaces de combinar la acción de la hipertermia localizada con la fotodisociación molecular para la liberación controlada de fármacos. En este contexto se desarrollaron cinco sistemas diferentes capaces de ejercer una acción sinérgica en sistemas celulares entre la PTT y la quimioterapia. Dos de ellos utilizan AuNSts para la activación de prodrogas de doxorrubicina (DOX) modificacadas con enlaces fotolábiles de tipo 2-nitrobencílico. El siguiente sistema utiliza AuNSts recubiertas de una capa mesoporosa de sílice (AuNSt@mSiO2), cargadas con DOX, y selladas con una puerta de parafinas termosensibles para la liberación de la DOX mediante el calor generado con la irradiación NIR. El cuarto sistema utiliza las mismas AuNSt@mSiO2 cargadas con DOX, pero selladas con un derivado voluminoso de polietilenglicol que contiene el espaciador fotolábil 2-nitrobencílico, para la liberación de la droga por la fotodisrupción molecular de este espaciador por absorción multifotónica. El último sistema utiliza nanopartículas de tipo Janus formadas por AuNSts funcionalizadas con un derivado del ácido succínico que contiene el espaciador 2-nitrobencílico y nanopartículas mesoporosas de sílice cargadas con DOX y funcionalizadas con un complejo supramolecular benzimidazol-ß-ciclodextrina sensible al pH. La fotodisrupción del enlace fotolábil, libera el mensajero químico (ácido succínico) que protonará la puerta sensible a pH, liberando la DOX. Se caracterizó la estructura, composición y actividad de todos los sistemas tanto in vitro como en sistemas celulares, obteniendo resultados sinérgicos entre la hipertermia localizada y la liberación intracelular de DOX, fotoinducida por luz NIR, en todos los sistemas desarrollados. / [CA] La teràpia fotodinámica (PDT) i la teràpia fototérmica (PTT) són alternatives prometedores, poc invasives i molt localitzades als tractaments tradicionals contra el càncer. Ambdós es basen en l'acció de transductors d'energia lumínica (fotosensibilitzadors, PS o agents fototérmicos, PTA) responsables de la transducció de l'energia lumínica en mediadors químics o energia tèrmica, respectivament, i la consegüent destrucció dels teixits tumorals. En la PDT, l'activació amb llum d'un PS, genera oxígen singlet i altres espècies reactive d'oxigen (ROS) al reaccionar amb l'oxígen molecular, i destrueixen els teixits tumorals i la seua microvasculatura. L'èxit d'esta teràpia es basa en l'elecció d'un PS òptim que absorbisca llum de la longitud d'ona apropiada per a penetrar prou en els teixits i que tinga les propietats fotofísiques adequades. En este treball hem sintetitzat un panell de cinc PSs del tipus BODIPY, tres d'ells completament nous, i hem caracteritzat la seua estructura i activitat fotodinámica i citotóxica.
En la teràpia fototérmica, la irradiació de PTAs que actuen com transductors de l'energia lumínica en energia tèrmica, provoca un augment de temperatura localitzat capaç de danyar les estructures cel·lulars, destruint el teixit tumoral i activant respostes immunitàries. En este treball utilitzem com a PTAs nanopartícules d'or, que es caracteritzen per les seues propietats òptiques úniques. En concret utilitzem nanoestreles d'or (AuNSt), la banda de ressonància de plasmón localitzada (LSPR) de les quals es sitúa en la regió de l'infraroig pròxim (NIR) de l'espectre electromagnètic. La morfología i composició de les AuNSts provoca un fort augment del camp electromagnètic al seu voltant quan els seus electrons de conducció s'exciten amb llum NIR Este efecte, a més de provocar un gran augment de temperatura en la seua superfície, facilita l'absorció multifotónica de certs compostos orgànics fotolábils, la qual cosa permet el desenvolupament de nanodispositius capaços de combinar l'acció de l'hipertermia localitzada amb la fotodisociación molecular per a l'alliberament controlat de substàncies. En este context es varen desenvolupar cinc sistemes diferents capaços d'exercir una acció sinèrgica en sistemes cel·lulars entre la PTT i la quimioteràpia. Dos d'ells utilitzen AuNSts per a l'activació de prodrogues de doxorrubicina (DOX) modificades amb enllaços fotolábils de tipus 2-nitrobencílic. El següent sistema utilitza AuNSts recobertes d'una capa mesoporosa de sílice (AuNSt\@mSiO2), carregades amb DOX, i segellades amb una porta de parafina termosensible per a l'alliberament de la DOX per mitjà del calor generat amb la irradiació NIR. El quart sistema utilitza les mateixes AuNSt\@mSiO2 carregades amb DOX, però segellades amb un derivat voluminós de polietilenglicol que conté l'espaciador fotolábil 2-nitrobencílic, per a l'alliberament de la droga per la fotodisrupció molecular d'aquest espaciador per absorció multifotónica. L'últim sistema utilitza nanopartículas de tipus Janus formades per AuNSts funcionalitzades amb un derivat de l'àcid succínic que conté l'espaciador 2-nitrobencílic i nanopartícules mesoporosas de sílice carregades amb DOX i funcionaliezades amb un complex supramole-cular benzimidazol-ß-ciclodextrina sensible al pH. La fotodisrupció de l'enllaç fotolábil, allibera el missatger químic (àcid succínic) que protronarà la porta sensible a pH, alliberant la DOX. Es va caracteritzar l'estructura, composició i activitat de tots els sistemes tant in vitro com en models cel·lulars, obtenint resultats sinèrgics entre la hipertèrmia localitzada i l'alliberament intracel·lular de DOX, fotoinduït per llum NIR, en tots els sistemes desenvolupats. / [EN] Photodynamic therapy (PDT) and photothermal therapy (PTT) are promising, lowinvasive, very localized alternatives to traditional cancer treatments. Both are based on the action of light energy transducers (photosensitizers, PS or photothermal agents, PTAs) responsible for the transduction of light energy in chemical mediators o thermal energy, respectively, and the consequent destruction of tumor tissues. In PDT, light activation of a PS, generates singlet oxygen and other reactive oxygen species (ROS) by reacting with molecular oxygen, and destroying tumor tissues and their microvascu-lature. The success of this therapy is based on the choice of an optimal PS that absorbs light of the appropriate wavelength to penetrate the tissues sufficiently and that has adequate photophysical properties. In this work we have synthesized a panel of five BODIPY-type PSs, three of them completely new, and we have characterized their structure and photodynamic and cytotoxic activity.
In photothermal therapy, the irradiation of PTAs which act as transducers of light energy into hermal energy, causes a localized temperature increase capable of damaging cellular structures, destroying tumor tissue and activating immune responses. In this work we use as PTAs gold nanoparticles, which are characterized by their unique optical properties. In particular, we use gold nanostars (AuNSt) whose localized surface plasmon resonance band (LSPR) is located in the near infrared (NIR) region of the electromagnetic spectrum. The morphology and composition of the AuNSts causes a strong increase in the electromagnetic field around them when their conductive electrons are excited by NIR light. This effect, besides causing large temperature increases on its surface, facilitates the multiphotonic absorption of certain photolabile organic compounds, which allows the development of nanodevices capable of combining the action of localized hyperthermia with molecular photodissociation for the controlled release of drugs. In this context, five different systems capable of carrying out a synergic action in cellular systems between PTT and chemotherapy were developed. Two of them use AuNSts for the activation of doxorubicin (DOX) prodrugs modified with photolabile linkages 2-nitrobenzyl-type. The next system uses AuNSts coated with a mesoporous layer of silica (AuNSt@mSiO2), loaded with DOX, and capped with a thermosensitive paraffin gate for the release of DOX by the heat generated by NIR irradiation. The fourth system uses the same DOX-loaded AuNSt@mSiO2, but sealed with a bulky polyethylene glycol derivative containing the photolabile 2-nitrobenzyl spacer, for drug release by the molecular photodisruption of this spacer by multiphoton absorption. The last system uses Janus-type nanoparticles formed by AuNSts functionalized with a succinic acid derivative containing the 2-nitrobenzylic spacer and mesoporous silica nanoparticles loaded with DOX and functionalized with a benzim-idazole-ß-cyclodextrin pH-sensitive supramolecular complex. The photodisruption of the photolabile bond releases the chemical messenger (succinic acid) that will protonate the pH-sensitive gate, releasing the DOX. The structure, composition and activity of all systems were characterized both in vitro and in cellular systems, obtaining syner-gistic results between localized hyperthermia and intracellular release of DOX, photoinduced by NIR light, in all developed systems. / Gorbe Moya, M. (2024). Nanodispositivos inteligentes para liberación controlada de fotosensibilizadores en terapia fotodinámica [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/214342
|
Page generated in 0.1031 seconds