Spelling suggestions: "subject:"cistemas numérica"" "subject:"cistemas numérique""
1 |
Elementos de álgebra que auxiliam nos fundamentos do cálculo / Algebra elements that help in the fundaments of calculusFreitas, Iron Felisberto de 27 March 2015 (has links)
Submitted by Cláudia Bueno (claudiamoura18@gmail.com) on 2015-10-26T16:12:34Z
No. of bitstreams: 2
Dissertação - Iron Felisberto de Freitas - 2015.pdf: 4566285 bytes, checksum: 347da00cced574440e6a02e8b4ddf92f (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2015-10-27T14:35:43Z (GMT) No. of bitstreams: 2
Dissertação - Iron Felisberto de Freitas - 2015.pdf: 4566285 bytes, checksum: 347da00cced574440e6a02e8b4ddf92f (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Made available in DSpace on 2015-10-27T14:35:43Z (GMT). No. of bitstreams: 2
Dissertação - Iron Felisberto de Freitas - 2015.pdf: 4566285 bytes, checksum: 347da00cced574440e6a02e8b4ddf92f (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)
Previous issue date: 2015-03-27 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / This paper addresses the formal-logical construction of number systems from the
set of natural numbers to the real numbers. Being the rst of these sets presented
by the axioms of Peano (1858 - 1932) and the latter results of Dedekind cuts (1831 -
1916) on the set of rational numbers. The passage the set of natural numbers to the
integers and for these the rational is done by equivalence classes. From a historical
perspective, in order to do that mathematics could advance, had to migrate from a
sense of \reality" to an abstract concept of number not subject to the amount of
idea. Since the beginning of this formal-logical construction of number systems it
is necessary to use the concept of correspondences between any two non-empty sets.
Finally , are also addressed the polynomial functions of 1st and 2nd degrees and the
respective charts in orthogonal Cartesian plane. / O presente trabalho aborda a constru c~ao l ogico-formal dos sistemas num ericos
desde, o conjunto dos n umeros naturais at e ao dos n umeros reais. Sendo o primeiro
destes conjuntos apresentado pelos axiomas de Peano (1858 - 1932), e o ultimo resulta
dos cortes de Dedekind (1831 - 1916) sobre ao conjunto dos n umeros racionais. A
passagem do conjunto dos n umeros naturais ao dos inteiros e destes ao dos racionais e
realizado por classes de equival^encias. Em uma perspectiva hist orica, a m de que, a
Matem atica pudesse avan car, era preciso migrar de uma no c~ao de \realidade" para
um conceito abstrato de n umero n~ao subordinado a ideia de quantidade. Desde o
in cio desta constru c~ao l ogico-formal dos sistemas num ericos faz-se necess ario o uso do
conceito de correspond^encias entre dois conjuntos n~ao vazios quaisquer. Por m, s~ao
tamb em abordadas as fun c~oes polinomiais de 1o e 2o graus e seus respectivos gr a cos
no plano cartesiano ortogonal.
|
Page generated in 0.0782 seconds