Spelling suggestions: "subject:"sitespecific pegylated"" "subject:"sitespecific pegylated""
1 |
Desenvolvimento de L-asparaginase peguilada de E. chrysanthemi para o tratamento de leucemias / Development of pegylated E. chrysanthemi L-asparaginase for the treatment of leukemiasKarin Mariana Torres Obreque 04 August 2017 (has links)
A crisantaspase é uma enzima do tipo asparaginase (ASNase) produzida pela bactéria Erwinia chrysanthemi e utilizada como biofármaco no tratamento da leucemia linfoblástica aguda (LLA) em casos de hipersensibilidade à ASNase de E. coli. As principais desvantagens deste biofármaco são a curta meia-vida (10 horas) e imunogenicidade. Nesse sentido, sua forma peguilada (PEG-crisantaspase) não só reduziria o efeito imunogênico, como também melhoraria a meia-vida plasmática. Atualmente, somente a ASNase de E. coli está disponível comercialmente na forma peguilada e essa, por ter sido uma das primeiras proteínas a serem peguiladas, é resultado de um processo de peguilação aleatória em resíduos de lisina. Portanto, apresenta alto grau de polidispersão em relação à quantidade de cadeias de PEG ligadas à enzima. Nesse trabalho desenvolvemos um processo de obtenção de crisantaspase peguilada de maneira sítio-específica, no grupamento N-terminal (PEG-crisantaspase). A crisantaspase foi obtida de forma recombinante na cepa E. coli BL21, cultivada em agitador metabólico e biorreator, em meio Luria Bertani. A produtividade volumétrica no biorreator aumentou 37% em comparação com o agitador metabólico (460 e 335 U·L-1·h-1 respectivamente). A crisantaspase foi recuperada por choque osmótico e purificada por cromatografia de troca catiônica (coluna HiTrap SP FF, 5 mL, eluição em pH 7,5), apresentando atividade específica de 694 U·mg-1, fator de purificação de 31 e rendimento de 69%. A crisantaspase purificada foi peguilada com mPEG-NHS 10 kDa, em tampão fosfato 100 mM, 22 °C, razão molar enzima:PEG 1:50 durante 30 min e sob diferentes valores de pH (6,5-9,0). O melhor rendimento de peguilação N-terminal (50%) foi em pH 7,5 com menor formação de estruturas poli-peguiladas (7%). A PEG-crisantaspase foi isolada por cromatografia de exclusão molecular, retendo 50% da atividade específica (357 U·mg-1) com valor de kM três vezes maior do que o da crisantaspase (150 e 48,5 µM respectivamente). Entretanto, apresentou maior estabilidade em altas temperaturas. Em duas semanas, a crisantaspase perdeu 93% de sua atividade específica enquanto que a PEG-crisantaspase foi estável por 20 dias. Portanto, a enzima PEG-crisantaspase desenvolvida representa uma alternativa promissora para o tratamento da LLA. / Crisantaspase is an asparaginase enzyme (ASNase) produced by Erwinia chrysanthemi bacterium and used as biopharmaceutical in the treatment of acute lymphoblastic leukemia (ALL) in case of hypersensivity to E. coli ASNase. The main disadvantages of this biopharmaceutical are the short half-life (10 hours) and immunogenicity. In this sense, its PEGylated form (PEG-crisantaspase) could not only reduce the immunogenic effect but also improve plasma half-life. Currently, only E. coli ASNase is commercially available in its pegylated form. Since ASNase was one of the first proteins to be pegylated, it corresponds to a random PEGylation process on lysine residues and consequently preparations are highly polydisperse. In this work we developed a process to obtain a site-specific N-terminal PEGylated crisantaspase (PEG-crisantaspase). Crisantaspase was recombinantly expressed in E. coli BL21 strain, grown in shaker and bioreactor, in Luria Bertani medium. Volumetric productivity in bioreactor increased 37% compared to shaker conditions (460 and 335 U·L-1·h-1 respectively). Crisantaspase was extracted by osmotic shock and purified by cation exchange chromatography (HiTrap SP FF column, 5 mL, elution at pH 7.5), presenting specific activity of 694 U·mg-1,31 purification fold and an yield of 69%. Purified crisantaspase was PEGylated with 10 kDa mPEG-NHS in 100mM phosphate buffer, 22°C, enzyme:PEG molar ratio of 1:50 for 30 min, and at different pH values (6.5-9.0). The highest N-terminal pegylation yield (50%) was at pH 7.5 with less poly-PEGylated forms (7%). PEG-crisantaspase was purified by size-exclusion chromatography, retaining 50% of specific activity (357 U·mg-1) with a kM value 3 times higher than crisantaspase (150 and 48,5 µM respectively). Nonetheless, PEG-crisantaspase was found to be more stable at high temperatures and over the time. In two weeks, crisantaspase lost 93% of its specific activity, while PEG-crisantaspase was stable for 20 days. Therefore, the novel PEG-crisantaspase enzyme developed represents a promising alternative for the treatment of ALL.
|
2 |
Desenvolvimento de L-asparaginase peguilada de E. chrysanthemi para o tratamento de leucemias / Development of pegylated E. chrysanthemi L-asparaginase for the treatment of leukemiasObreque, Karin Mariana Torres 04 August 2017 (has links)
A crisantaspase é uma enzima do tipo asparaginase (ASNase) produzida pela bactéria Erwinia chrysanthemi e utilizada como biofármaco no tratamento da leucemia linfoblástica aguda (LLA) em casos de hipersensibilidade à ASNase de E. coli. As principais desvantagens deste biofármaco são a curta meia-vida (10 horas) e imunogenicidade. Nesse sentido, sua forma peguilada (PEG-crisantaspase) não só reduziria o efeito imunogênico, como também melhoraria a meia-vida plasmática. Atualmente, somente a ASNase de E. coli está disponível comercialmente na forma peguilada e essa, por ter sido uma das primeiras proteínas a serem peguiladas, é resultado de um processo de peguilação aleatória em resíduos de lisina. Portanto, apresenta alto grau de polidispersão em relação à quantidade de cadeias de PEG ligadas à enzima. Nesse trabalho desenvolvemos um processo de obtenção de crisantaspase peguilada de maneira sítio-específica, no grupamento N-terminal (PEG-crisantaspase). A crisantaspase foi obtida de forma recombinante na cepa E. coli BL21, cultivada em agitador metabólico e biorreator, em meio Luria Bertani. A produtividade volumétrica no biorreator aumentou 37% em comparação com o agitador metabólico (460 e 335 U·L-1·h-1 respectivamente). A crisantaspase foi recuperada por choque osmótico e purificada por cromatografia de troca catiônica (coluna HiTrap SP FF, 5 mL, eluição em pH 7,5), apresentando atividade específica de 694 U·mg-1, fator de purificação de 31 e rendimento de 69%. A crisantaspase purificada foi peguilada com mPEG-NHS 10 kDa, em tampão fosfato 100 mM, 22 °C, razão molar enzima:PEG 1:50 durante 30 min e sob diferentes valores de pH (6,5-9,0). O melhor rendimento de peguilação N-terminal (50%) foi em pH 7,5 com menor formação de estruturas poli-peguiladas (7%). A PEG-crisantaspase foi isolada por cromatografia de exclusão molecular, retendo 50% da atividade específica (357 U·mg-1) com valor de kM três vezes maior do que o da crisantaspase (150 e 48,5 µM respectivamente). Entretanto, apresentou maior estabilidade em altas temperaturas. Em duas semanas, a crisantaspase perdeu 93% de sua atividade específica enquanto que a PEG-crisantaspase foi estável por 20 dias. Portanto, a enzima PEG-crisantaspase desenvolvida representa uma alternativa promissora para o tratamento da LLA. / Crisantaspase is an asparaginase enzyme (ASNase) produced by Erwinia chrysanthemi bacterium and used as biopharmaceutical in the treatment of acute lymphoblastic leukemia (ALL) in case of hypersensivity to E. coli ASNase. The main disadvantages of this biopharmaceutical are the short half-life (10 hours) and immunogenicity. In this sense, its PEGylated form (PEG-crisantaspase) could not only reduce the immunogenic effect but also improve plasma half-life. Currently, only E. coli ASNase is commercially available in its pegylated form. Since ASNase was one of the first proteins to be pegylated, it corresponds to a random PEGylation process on lysine residues and consequently preparations are highly polydisperse. In this work we developed a process to obtain a site-specific N-terminal PEGylated crisantaspase (PEG-crisantaspase). Crisantaspase was recombinantly expressed in E. coli BL21 strain, grown in shaker and bioreactor, in Luria Bertani medium. Volumetric productivity in bioreactor increased 37% compared to shaker conditions (460 and 335 U·L-1·h-1 respectively). Crisantaspase was extracted by osmotic shock and purified by cation exchange chromatography (HiTrap SP FF column, 5 mL, elution at pH 7.5), presenting specific activity of 694 U·mg-1,31 purification fold and an yield of 69%. Purified crisantaspase was PEGylated with 10 kDa mPEG-NHS in 100mM phosphate buffer, 22°C, enzyme:PEG molar ratio of 1:50 for 30 min, and at different pH values (6.5-9.0). The highest N-terminal pegylation yield (50%) was at pH 7.5 with less poly-PEGylated forms (7%). PEG-crisantaspase was purified by size-exclusion chromatography, retaining 50% of specific activity (357 U·mg-1) with a kM value 3 times higher than crisantaspase (150 and 48,5 µM respectively). Nonetheless, PEG-crisantaspase was found to be more stable at high temperatures and over the time. In two weeks, crisantaspase lost 93% of its specific activity, while PEG-crisantaspase was stable for 20 days. Therefore, the novel PEG-crisantaspase enzyme developed represents a promising alternative for the treatment of ALL.
|
3 |
Advancing Cell-Free Protein Synthesis Systems for On-Demand Next-Generation Protein Therapeutics and Clinical DiagnosticsZhao, Emily Ann Long 16 December 2021 (has links)
Recombinant proteins have many medical and industrial applications, but their use is complicated by commercial production and stability constraints. These issues are particularly challenging for recombinant proteins used in pharmaceutical therapeutics and clinical diagnostics. Expensive production and distribution limit the accessibility of therapeutics and diagnostics especially in the developing world. Additionally, clinical use of recombinant proteins face further challenges within biological systems including biological degradation and immunogenicity. To increase the accessibility of recombinant proteins, the cost and inefficiencies of protein manufacturing and distribution need to be significantly reduced. A powerful tool to aid in this endeavor is cell-free protein synthesis (CFPS) technology. CFPS is a versatile platform for recombinant protein production due to its open reaction environment, flexible reaction conditions, and rapid protein expression capabilities. These avoid the disadvantages of conventional manufacturing and present the capability of on-demand protein therapeutic production outside of centralized facilities. To improve the efficacy of recombinant proteins for medicinal use, protein engineering techniques such as PEGylation, or the conjugation of PEG polymers to protein surfaces, can be employed. PEGylation is widely used to enhance the pharmacokinetic properties of protein therapeutics. Deciphering optimal PEG conjugation sites is a continuing area of research that can be facilitated by CFPS systems that enable high-throughput, site-specific PEGylation. This dissertation presents advances in CFPS technology to promote increased accessibility and stability of life-saving therapeutics and diagnostics. The work presented here (1) improves on-demand therapeutic production capabilities by creating shelf-stable, endotoxin-free CFPS systems, (2) aids the rational design of next-generation PEGylated protein therapeutics through an in silico-in vitro CFPS screening platform, and (3) advances the development of portable clinical diagnostics for rapid and sustainable deployment at point-of-care through CFPS biosensor technology. The innovations of this dissertation are described in four publications. Specifically, an endotoxin-free CFPS system lyophilized with lyoprotectants is demonstrated that shows improved shelf-stability over standard lyophilized systems. A streamlined procedure for preparing endotoxin-free extract using auto-induction media is presented that significantly reduces CFPS preparation labor and time. A combinatorial screening approach is demonstrated in which coarse-grain molecular simulation informs PEGylation site selection as verified by CFPS experimental results. An inexpensive paper-based, saliva-activated CFPS biosensor platform is developed for the detection of SARS-CoV-2 sequences.
|
Page generated in 0.4535 seconds