• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 1
  • Tagged with
  • 12
  • 12
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Conception des principes de coopération conducteur-véhicule pour les systèmes de conduite automatisée / Designing driver-vehicle cooperation principles for automated driving systems

Guo, Chunshi 29 May 2017 (has links)
Face à l’évolution rapide des technologies nécessaires à l’automatisation de la conduite au cours de ces dernières années, les grands constructeurs automobiles promettent la commercialisation de véhicules autonomes à l’horizon 2020. Cependant, la définition des interactions entre les systèmes de conduite automatisée et le conducteur au cours de la tâche de conduite reste une question ouverte. L'objectif de cette thèse est de concevoir, développer et évaluer des principes de coopération entre le conducteur et les systèmes de conduite automatisée. Compte tenu de la complexité d'un tel Système Homme-Machine, la thèse propose, en premier lieu une architecture de contrôle coopératif hiérarchique et deux principes de coopération généraux sur deux niveaux dans l’architecture qui serviront ensuite de base commune pour la conception des systèmes coopératifs développés pour les cas d’usages définis. Afin d’assurer une coopération efficace avec le conducteur dans un environnement de conduite dynamique, le véhicule autonome a besoin de comprendre la situation et de partager sa compréhension de la situation avec le conducteur. Pour cela, cette thèse propose un formalisme de représentation de la scène de conduite basé sur le repère de Frenet. Ensuite, une méthode de prédiction de trajectoire est également proposée. Sur la base de la détection de manœuvre et de l'estimation du jerk, cette méthode permet d’améliorer la précision de la trajectoire prédite comparée à celle déterminée par la méthode basée sur une hypothèse d'accélération constante. Dans la partie d’études de cas, deux principes de coopération sont mis en œuvre dans deux cas d’usage. Dans le premier cas de la gestion d’insertion sur autoroute, un système de contrôle longitudinal coopératif est conçu. Il comporte une fonction de planification de manœuvre et de génération de trajectoire basée sur la commande prédictive. En fonction du principe de coopération, ce système peut à la fois gérer automatiquement l’insertion d’un véhicule et donner la possibilité au conducteur de changer la décision du système. Dans le second cas d'usage qui concerne le contrôle de trajectoire et le changement de voie sur autoroute, le problème de partage du contrôle est formulé comme un problème d’optimisation sous contraintes qui est résolu en ligne en utilisant l’approche de la commande prédictive (MPC). Cette approche assure le transfert continu de l’autorité du contrôle entre le système et le conducteur en adaptant les pondérations dans la fonction de coût et en mettant en œuvre des contraintes dynamiques en ligne dans le modèle prédictif, tout en informant le conducteur des dangers potentiels grâce au retour haptique sur le volant. Les deux systèmes sont évalués à l’aide de tests utilisateur sur simulateur de conduite. En fonction des résultats des tests, cette thèse discute la question des facteurs humains et la perception de l'utilisateur sur les principes de coopération. / Given rapid advancement of automated driving (AD) technologies in recent years, major car makers promise the commercialization of AD vehicles within one decade from now. However, how the automation should interact with human drivers remains an open question. The objective of this thesis is to design, develop and evaluate interaction principles for AD systems that can cooperate with a human driver. Considering the complexity of such a human-machine system, this thesis begins with proposing two general cooperation principles and a hierarchical cooperative control architecture to lay a common basis for interaction and system design in the defined use cases. Since the proposed principles address a dynamic driving environment involving manually driven vehicles, the AD vehicle needs to understand it and to share its situational awareness with the driver for efficient cooperation. This thesis first proposes a representation formalism of the driving scene in the Frenet frame to facilitate the creation of the spatial awareness of the AD system. An adaptive vehicle longitudinal trajectory prediction method is also presented. Based on maneuver detection and jerk estimation, this method yields better prediction accuracy than the method based on constant acceleration assumption. As case studies, this thesis implements two cooperation principles for two use cases respectively. In the first use case of highway merging management, this thesis proposes a cooperative longitudinal control framework featuring an ad-hoc maneuver planning function and a model predictive control (MPC) based trajectory generation for transient maneuvers. This framework can automatically handle a merging vehicle, and at the mean time it offers the driver a possibility to change the intention of the system. In another use case concerning highway lane positioning and lane changing, a shared steering control problem is formulated in MPC framework. By adapting the weight on the stage cost and implementing dynamic constraints online, the MPC ensures seamless control transfer between the system and the driver while conveying potential hazards through haptic feedback. Both of the designed systems are evaluated through user tests on driving simulator. Finally, human factors issue and user’s perception on these new interaction paradigms are discussed.
12

Die Erkennung bevorstehender Fahrstreifenwechsel mittels der Fusion und Klassifikation von Merkmalsgrößen des Fahrzeugumfelds, Fahrerverhaltens und Fahrzeugstatus

Leonhardt, Veit 18 December 2024 (has links)
Damit Fahrerassistenzsysteme das noch immer unfallträchtige Manöver des Fahrstreifenwechsels wirksam gegen Unfälle absichern können, benötigen sie zuverlässig wie frühzeitig Kenntnis der Situationen, denen ein solches folgen wird. Nur so sind sie in der Lage, ihre Unterstützung in wirklich allen Situationen zu leisten, in denen diese von Nutzen ist, ohne dafür unpassende Warnungen oder Eingriffe in die Fahrzeugführung in Kauf nehmen zu müssen und an Akzeptanz einzubüßen oder gar selbst zum Sicherheitsrisiko zu werden. Die größte Herausforderung stellt dabei die Komplexität und Vielfalt der im städtischen Verkehr vorkommenden Situationen dar. Bisherige Assistenzsysteme stützen sich zur Aktivierung ihrer Funktion entweder auf den Status des Fahrtrichtungsanzeigers oder werten das Überfahren einer Fahrstreifenbegrenzung als dann allerdings bereits laufenden Fahrstreifenwechsel. Das eine erfolgt nachweislich äußert unzuverlässig, mit dem anderen bleibt kaum mehr Zeit für eine frühzeitige, auf Situation und Fahrer abgestimmte Assistenz. Mit der vorliegenden Arbeit wird ein funktionierender Ansatz zur automatisierten Erkennung bevorstehender Fahrstreifenwechsel vorgestellt, als im Fahrzeug lauffähiges System implementiert und seine Funktion anhand realer Fahrdaten unter Beweis gestellt. Im Zentrum des Erkennungsansatzes stehen aus dem Fahrzeug heraus erfassbare Merkmalsgrößen des Fahrzeugumfelds, Fahrerverhaltens und Fahrzeugstatus, die mit Hilfe künstlicher neuronaler Netze fusioniert und klassifiziert werden. Die Entwicklung der Algorithmen sowie sämtliche Untersuchungen zu ihrer Leistungsfähigkeit beruhen auf Messdaten natürlichen Fahrverhaltens im Verkehr einer Großstadt, die in einer umfangreichen Realfahrtstudie mit einem mit Radar- und Kamerasensorik ausgestatteten Versuchsfahrzeug erhoben wurden. Basierend auf diesen Daten werden zunächst Parameter einer zonenbasierten Repräsentation des Fahrzeugumfelds, der Blickrichtung des Fahrers sowie Zustandsgrößen des Fahrzeugs auf ihre Eignung als Merkmalsgröße untersucht. Es wird gezeigt, inwieweit für verschiedene Arten von Fahrstreifenwechseln und in unterschiedlichem zeitlichen Abstand auf das Manöver bereits zwischen dem Wert einer Merkmalsgröße und dem Bevorstehen eines Fahrstreifenwechsels ein Zusammenhang besteht. Mit einer Auswahl geeigneter Merkmalsgrößen wird die Erkennung schließlich in verschiedenen Ausprägungen implementiert, mittels maschinellen Lernens parametrisiert und über alle Arten in den Daten vorkommender Fahrstreifenwechselsituationen evaluiert. Untersucht wird dabei nicht nur die Erkennungsleistung des Gesamtsystems für verschiedene Vorhersagehorizonte, sondern ebenso die einer Erkennung mit den Merkmalsgrößen nur jeweils eines der Aspekte Fahrzeugumfeld, Fahrerverhalten und Fahrzeugstatus sowie der Effekt des Einbeziehens auch der Merkmalswerthistorie.:Bibliographische Beschreibung i Inhaltsverzeichnis v Abkürzungs- und Symbolverzeichnis xi Abkürzungen xi Symbole xi Vorwort xiii 1 Einleitung 1 1.1 Motivation 1 1.2 Aktueller Stand der Forschung 4 1.3 Forschungslücken 11 1.4 Zielsetzung der Arbeit 12 1.5 Inhalt und Gliederung der Arbeit 14 1.6 Formelzeichen und Zahlenwerte 15 2 Die Fahrstreifenwechselsituation und der algorithmische Ansatz ihrer Erkennung 17 2.1 Grundlegende Begriffe 17 2.2 Modelle zur Beschreibung des Fahrstreifenwechsels 18 2.2.1 Das 3-Ebenen-Modell der kognitiven Prozesse zur Fahrzeugführung 18 2.2.2 Messbarkeit kognitiver Prozesse und der Fahrerintention 21 2.2.3 Das System Fahrer-Fahrzeug-Umwelt 23 2.2.4 Das Phasenmodell des Ablaufs eines Fahrstreifenwechsels 25 2.2.5 Das Modell der Fahrstreifenwechselsituation 26 2.3 Der prinzipielle Ansatz zur Erkennung von Fahrstreifenwechseln 30 2.4 Ein aspektübergreifender Erkennungsansatz im System Fahrer-Fahrzeug-Umwelt 31 3 Merkmalsgrößen zur Erkennung bevorstehender Fahrstreifenwechsel 35 3.1 Kriterien der Wahl der Merkmalsgrößen 35 3.2 Das Versuchsfahrzeug 36 3.2.1 Umfeldsensorik 37 3.2.2 Fahrersensorik 40 3.2.3 Rechentechnik 42 3.3 Definition und Berechnung der Merkmalsgrößen 42 3.3.1 Merkmalsgrößen des Fahrzeugumfelds 43 3.3.1.1 Existenz, Zugänglichkeit und Abstand benachbarter Fahrstreifen 43 3.3.1.2 Sensorübergreifendes Tracking umgebender Objekte als Grundlage 44 3.3.1.3 Einteilung des Fahrzeugumfelds in Zonen 45 3.3.1.4 Beschreibung der Belegung umgebender Zonen durch Objektparameter 49 3.3.1.5 Kurzreferenz zu den Merkmalsgrößen des Fahrzeugumfelds 57 3.3.2 Merkmalsgrößen des Fahrerverhaltens 58 3.3.2.1 Kopfposition und Kopflage 59 3.3.2.2 Blickbereiche 60 3.3.2.3 Kurzreferenz zu den Merkmalsgrößen des Fahrerverhaltens 63 3.3.3 Merkmalsgrößen des Fahrzeugstatus 64 3.3.3.1 Kurzreferenz zu den Merkmalsgrößen des Fahrzeugstatus 66 3.4 Synchrone Berechnung und Auswertung der Merkmalswerte 67 4 Realfahrtstudie zur Messdatenakquise 69 4.1 Studienteilnehmer 69 4.2 Studiendesign und Ablauf 70 4.3 Streckenverlauf 72 4.4 Erhobene Datensätze und Arten vorkommender Fahrstreifenwechselsituationen 73 5 Statistische Analyse und Einzelbewertung der Merkmalsgrößen 77 5.1 Metriken zur statistischen Bewertung der Merkmalsgrößen 77 5.1.1 Der t-Test 78 5.1.2 Die Effektstärke Cohen’s d 81 5.1.3 Die Effektstärke Hedges‘ g 82 5.1.4 Einordnung der Effektstärke 83 5.1.5 Auffassung der Messdaten und Durchführung der Evaluation 83 5.2 Bewertung aus Sicht des einzelnen Messdatums 85 5.2.1 Wahl und Berechnung der Metriken zur Bewertung aus Messdatensicht 85 5.2.2 Ergebnisse zur Signifikanz und Effektstärke aus Messdatensicht 87 5.3 Bewertung aus Sicht des einzelnen Manövers 97 5.3.1 Wahl und Berechnung der Metriken zur Bewertung aus Manöversicht 98 5.3.2 Ergebnisse zur Signifikanz und Effektstärke aus Manöversicht 100 5.4 Fazit der Evaluation und ausgewählter Satz von Merkmalsgrößen 108 6 Wissensbasiert modellierte Klassifikation mittels eines Bayes’schen Netzes 113 6.1 Verfahren zur wissensbasiert modellierten Klassifikation 113 6.1.1 Fuzzy-Logik 114 6.1.2 Support-Vector-Machines und Relevance-Vector-Machines 117 6.1.3 Bayes‘sche Netze 120 6.1.4 Hidden-Markov-Models 125 6.1.5 Die Wahl eines Bayes’schen Netzes zur wissensbasierten Modellierung 129 6.2 Umsetzung einer Erkennung auf Basis eines Bayes‘schen Netzes 130 6.2.1 Aufbau des modellierten Bayes’schen Netzes 131 6.3 Übergang zu einer auf maschinellem Lernen beruhenden Klassifikation 133 7 Künstliche neuronale Netze als Verfahren zur maschinell optimierten Klassifikation 135 7.1 Biologisches Vorbild und Entstehungsgeschichte 135 7.2 Aufbau und Funktionsweise künstlicher neuronaler Netze 137 7.3 Netzschichten und Netztopologie 141 7.4 Parametrisierung 143 7.4.1 Maschinelles Lernen und Optimierung durch Fehlerminimierung 144 7.4.2 Das Gradientenverfahren 146 7.4.3 Gütefunktion und Delta-Lernregel 149 7.4.4 Backpropagation 151 7.4.5 Inkrementelles und stapelweises Training 153 7.5 Abbildung zeitlicher Zusammenhänge 154 7.5.1 Zeitverzögerte neuronale Netze 154 7.5.2 Rekurrente neuronale Netze 156 7.5.3 Das Problem der verschwindenden und explodierenden Gradienten 158 7.5.4 Long-Short-Term-Memory 158 8 Neuronales Netz zur Erkennung jedes Bevorstehens eines Fahrstreifenwechsels 161 8.1 Anforderungen an die Erkennung und ihre Umsetzung 161 8.1.1 Forderung von Effektivität 161 8.1.2 Forderung von Echtzeitfähigkeit 162 8.1.3 Forderung von Realitätsnähe 162 8.1.4 Forderung einer geringen Modellkomplexität 162 8.1.5 Forderung einer gruppenweisen Verarbeitung der Merkmalsgrößen 163 8.2 Aufbau und Funktionsweise des Netzes 164 8.3 Modellierung der Merkmalswerthistorie 166 9 Maschinelle Parametrisierung des neuronalen Netzes 171 9.1 Assistenzbedingte Anforderungen an das Verhalten des Erkennungssystems 171 9.2 Vorbetrachtungen zur Gesamtfehlerdefinition 172 9.2.1 Detektionswert und Detektionsfehler als binäre Größen 173 9.2.2 Bewertung der Güte eines binären Klassifikators 174 9.2.3 Gewichtung der Fehlerklassen in der Gesamtfehlerfunktion 175 9.3 Gesamtfehlerfunktion 177 9.4 Optimierungsverfahren 180 9.5 Aufteilung und Filterung der Messdaten 181 9.6 Technische Umsetzung und Durchführung der Parametrisierung 183 10 Realisiertes Gesamtsystem zur Erkennung bevorstehender Fahrstreifenwechsel 185 10.1 Aufbau und Implementierung des Erkennungssystems 185 11 Empirische Evaluation der realisierten Erkennungsleistung 191 11.1 Evaluationsmethode 191 11.2 Erkennungsleistung des Gesamtsystems 193 11.3 Erkennungsleistung der Merkmalsgruppen in Abhängigkeit des Zeithorizonts 195 11.4 Beitrag der Modellierung der Merkmalswerthistorie 199 11.5 Beitrag der gruppenübergreifenden Fusion von Merkmalsgrößen 202 11.6 Abhängigkeiten der Ergebnisse und sie beeinflussende Faktoren 204 12 Zusammenfassung und Ausblick 207 A Anhang 219 A.1 Tracking der Objekte im Fahrzeugumfeld 219 A.1.1 Prinzip des Unscented-Kalman-Filters und CTRV Bewegungsmodells 219 A.1.2 Probabilistische Multi-Sensor-Multi-Objekt-Messdatenzuordnung 222 A.1.3 Initialisierung, Nutzung und Auflösung von Objektschätzungen 228 A.2 Tabellen zur Signifikanz und Stärke des Effekts einzelner Merkmalsgrößen 229 Literaturverzeichnis 233 Abbildungsverzeichnis 251 Tabellenverzeichnis 253 / In order to enable driver assistance systems to effectively safeguard the still accident-prone manoeuvre of changing lanes against accidents, they need reliable and early knowledge of any situation that will be followed by such a manoeuvre. Only then they will be able to provide assistance in all the situations in which it is useful without having to accept inappropriate warnings or interventions in vehicle control and so losing acceptance or even becoming a safety risk themselves. The biggest challenge here is the complexity and variety of situations occurring in urban traffic. Current assistance systems either rely on the status of the direction indicator to activate their function or interpret the crossing of a lane boundary as a lane change that is already in progress. The former has been proven to be very unreliable, while the latter leaves hardly any time for early assistance tailored to the situation and driver. This work presents a functional approach to the automated detection of impending lane changes, implements it as an in-vehicle system and demonstrates its functionality by using real driving data. The detection approach centres on feature variables of the driving situation, driver behaviour and vehicle status that can be recorded from a vehicle and which are fused and classified with the help of artificial neural networks. The development of the algorithms and all investigations into their performance are based on measurement data of natural driving behaviour in traffic in a bigger city that were collected in an extensive naturalistic driving study with a test vehicle equipped with radar and camera sensors. Based on these data, parameters from a zone-based representation of the surroundings of the vehicle, the direction of the driver’s glances and vehicle state variables are first analysed for their suitability as feature variables. For different types of lane changes and at different time intervals to the manoeuvre it is shown to what extent there already is a correlation between the value of a variable and the imminence of a lane change. Using a selection of suitable feature variables the automated detection is finally implemented in various versions, parameterised by means of machine learning and evaluated across all types of lane change situations occurring in the data. Not only the detection performance of the overall system for different prediction horizons is investigated but also the detection with the feature variables of only one of the aspects driving situation, driver behaviour and vehicle status as well as the effect of including the feature value history.:Bibliographische Beschreibung i Inhaltsverzeichnis v Abkürzungs- und Symbolverzeichnis xi Abkürzungen xi Symbole xi Vorwort xiii 1 Einleitung 1 1.1 Motivation 1 1.2 Aktueller Stand der Forschung 4 1.3 Forschungslücken 11 1.4 Zielsetzung der Arbeit 12 1.5 Inhalt und Gliederung der Arbeit 14 1.6 Formelzeichen und Zahlenwerte 15 2 Die Fahrstreifenwechselsituation und der algorithmische Ansatz ihrer Erkennung 17 2.1 Grundlegende Begriffe 17 2.2 Modelle zur Beschreibung des Fahrstreifenwechsels 18 2.2.1 Das 3-Ebenen-Modell der kognitiven Prozesse zur Fahrzeugführung 18 2.2.2 Messbarkeit kognitiver Prozesse und der Fahrerintention 21 2.2.3 Das System Fahrer-Fahrzeug-Umwelt 23 2.2.4 Das Phasenmodell des Ablaufs eines Fahrstreifenwechsels 25 2.2.5 Das Modell der Fahrstreifenwechselsituation 26 2.3 Der prinzipielle Ansatz zur Erkennung von Fahrstreifenwechseln 30 2.4 Ein aspektübergreifender Erkennungsansatz im System Fahrer-Fahrzeug-Umwelt 31 3 Merkmalsgrößen zur Erkennung bevorstehender Fahrstreifenwechsel 35 3.1 Kriterien der Wahl der Merkmalsgrößen 35 3.2 Das Versuchsfahrzeug 36 3.2.1 Umfeldsensorik 37 3.2.2 Fahrersensorik 40 3.2.3 Rechentechnik 42 3.3 Definition und Berechnung der Merkmalsgrößen 42 3.3.1 Merkmalsgrößen des Fahrzeugumfelds 43 3.3.1.1 Existenz, Zugänglichkeit und Abstand benachbarter Fahrstreifen 43 3.3.1.2 Sensorübergreifendes Tracking umgebender Objekte als Grundlage 44 3.3.1.3 Einteilung des Fahrzeugumfelds in Zonen 45 3.3.1.4 Beschreibung der Belegung umgebender Zonen durch Objektparameter 49 3.3.1.5 Kurzreferenz zu den Merkmalsgrößen des Fahrzeugumfelds 57 3.3.2 Merkmalsgrößen des Fahrerverhaltens 58 3.3.2.1 Kopfposition und Kopflage 59 3.3.2.2 Blickbereiche 60 3.3.2.3 Kurzreferenz zu den Merkmalsgrößen des Fahrerverhaltens 63 3.3.3 Merkmalsgrößen des Fahrzeugstatus 64 3.3.3.1 Kurzreferenz zu den Merkmalsgrößen des Fahrzeugstatus 66 3.4 Synchrone Berechnung und Auswertung der Merkmalswerte 67 4 Realfahrtstudie zur Messdatenakquise 69 4.1 Studienteilnehmer 69 4.2 Studiendesign und Ablauf 70 4.3 Streckenverlauf 72 4.4 Erhobene Datensätze und Arten vorkommender Fahrstreifenwechselsituationen 73 5 Statistische Analyse und Einzelbewertung der Merkmalsgrößen 77 5.1 Metriken zur statistischen Bewertung der Merkmalsgrößen 77 5.1.1 Der t-Test 78 5.1.2 Die Effektstärke Cohen’s d 81 5.1.3 Die Effektstärke Hedges‘ g 82 5.1.4 Einordnung der Effektstärke 83 5.1.5 Auffassung der Messdaten und Durchführung der Evaluation 83 5.2 Bewertung aus Sicht des einzelnen Messdatums 85 5.2.1 Wahl und Berechnung der Metriken zur Bewertung aus Messdatensicht 85 5.2.2 Ergebnisse zur Signifikanz und Effektstärke aus Messdatensicht 87 5.3 Bewertung aus Sicht des einzelnen Manövers 97 5.3.1 Wahl und Berechnung der Metriken zur Bewertung aus Manöversicht 98 5.3.2 Ergebnisse zur Signifikanz und Effektstärke aus Manöversicht 100 5.4 Fazit der Evaluation und ausgewählter Satz von Merkmalsgrößen 108 6 Wissensbasiert modellierte Klassifikation mittels eines Bayes’schen Netzes 113 6.1 Verfahren zur wissensbasiert modellierten Klassifikation 113 6.1.1 Fuzzy-Logik 114 6.1.2 Support-Vector-Machines und Relevance-Vector-Machines 117 6.1.3 Bayes‘sche Netze 120 6.1.4 Hidden-Markov-Models 125 6.1.5 Die Wahl eines Bayes’schen Netzes zur wissensbasierten Modellierung 129 6.2 Umsetzung einer Erkennung auf Basis eines Bayes‘schen Netzes 130 6.2.1 Aufbau des modellierten Bayes’schen Netzes 131 6.3 Übergang zu einer auf maschinellem Lernen beruhenden Klassifikation 133 7 Künstliche neuronale Netze als Verfahren zur maschinell optimierten Klassifikation 135 7.1 Biologisches Vorbild und Entstehungsgeschichte 135 7.2 Aufbau und Funktionsweise künstlicher neuronaler Netze 137 7.3 Netzschichten und Netztopologie 141 7.4 Parametrisierung 143 7.4.1 Maschinelles Lernen und Optimierung durch Fehlerminimierung 144 7.4.2 Das Gradientenverfahren 146 7.4.3 Gütefunktion und Delta-Lernregel 149 7.4.4 Backpropagation 151 7.4.5 Inkrementelles und stapelweises Training 153 7.5 Abbildung zeitlicher Zusammenhänge 154 7.5.1 Zeitverzögerte neuronale Netze 154 7.5.2 Rekurrente neuronale Netze 156 7.5.3 Das Problem der verschwindenden und explodierenden Gradienten 158 7.5.4 Long-Short-Term-Memory 158 8 Neuronales Netz zur Erkennung jedes Bevorstehens eines Fahrstreifenwechsels 161 8.1 Anforderungen an die Erkennung und ihre Umsetzung 161 8.1.1 Forderung von Effektivität 161 8.1.2 Forderung von Echtzeitfähigkeit 162 8.1.3 Forderung von Realitätsnähe 162 8.1.4 Forderung einer geringen Modellkomplexität 162 8.1.5 Forderung einer gruppenweisen Verarbeitung der Merkmalsgrößen 163 8.2 Aufbau und Funktionsweise des Netzes 164 8.3 Modellierung der Merkmalswerthistorie 166 9 Maschinelle Parametrisierung des neuronalen Netzes 171 9.1 Assistenzbedingte Anforderungen an das Verhalten des Erkennungssystems 171 9.2 Vorbetrachtungen zur Gesamtfehlerdefinition 172 9.2.1 Detektionswert und Detektionsfehler als binäre Größen 173 9.2.2 Bewertung der Güte eines binären Klassifikators 174 9.2.3 Gewichtung der Fehlerklassen in der Gesamtfehlerfunktion 175 9.3 Gesamtfehlerfunktion 177 9.4 Optimierungsverfahren 180 9.5 Aufteilung und Filterung der Messdaten 181 9.6 Technische Umsetzung und Durchführung der Parametrisierung 183 10 Realisiertes Gesamtsystem zur Erkennung bevorstehender Fahrstreifenwechsel 185 10.1 Aufbau und Implementierung des Erkennungssystems 185 11 Empirische Evaluation der realisierten Erkennungsleistung 191 11.1 Evaluationsmethode 191 11.2 Erkennungsleistung des Gesamtsystems 193 11.3 Erkennungsleistung der Merkmalsgruppen in Abhängigkeit des Zeithorizonts 195 11.4 Beitrag der Modellierung der Merkmalswerthistorie 199 11.5 Beitrag der gruppenübergreifenden Fusion von Merkmalsgrößen 202 11.6 Abhängigkeiten der Ergebnisse und sie beeinflussende Faktoren 204 12 Zusammenfassung und Ausblick 207 A Anhang 219 A.1 Tracking der Objekte im Fahrzeugumfeld 219 A.1.1 Prinzip des Unscented-Kalman-Filters und CTRV Bewegungsmodells 219 A.1.2 Probabilistische Multi-Sensor-Multi-Objekt-Messdatenzuordnung 222 A.1.3 Initialisierung, Nutzung und Auflösung von Objektschätzungen 228 A.2 Tabellen zur Signifikanz und Stärke des Effekts einzelner Merkmalsgrößen 229 Literaturverzeichnis 233 Abbildungsverzeichnis 251 Tabellenverzeichnis 253

Page generated in 0.0973 seconds